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Euler-Korteweg system:

Otp + div(pu) = 0,
{ (x,t) e RY x [0, T].

o+ -Vt Va(s) = (K ap + 1K (Vo).

(EK)

K(p): capillary coefficient, smooth, positive on R**. K can be unbounded near p = 0,
an important case is K = 1/p which corresponds to the so called quantum pressure.

9(p): related to the pressure by g’ = p’/p, stability assumption: g’(pg) > 0.
Gross-Pitaevskii equation
10 + Ay = ([[* = 1)

Aim: underline the similarities between these problems.
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In the case K(p) = 1/p, and for irrotational flows, there is a formal equivalence
between Euler-Korteweg and the nonlinear Schrédinger equation

100 + Ay = ([P ),
through the Madelung transform
(p, U= V) = := \/pe*/2.

For technical reasons, this case simplifies a lot the analysis of the system, we focus
here on the case of a general capillary coefficient.

Similarities appear both at the linear and nonlinear level.
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Background for the Gross-Pitaevskii equation

@ Conservation of energy % / [Vap[? + || — 1]2/2dx, momentum Im [ Vepdx.
R

@ Global well-posedness in the energy space [Béthuel-Saut 99, Gérard 06, Killip et
al 11].

@ If i, =1+ v, Vi, small enough the solution scatters in dimension > 3
[Gustafson-Nakanishi-Tsai 08], existence of dispersive solutions in dimension 2
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Background for the Gross-Pitaevskii equation

@ Conservation of energy % /d [Vap[? + || — 1]2/2dx, momentum Im [ Vepdx.
R
@ Global well-posedness in the energy space [Béthuel-Saut 99, Gérard 06, Killip et
al 11].

@ If i, =1+ v, Vi, small enough the solution scatters in dimension > 3
[Gustafson-Nakanishi-Tsai 08], existence of dispersive solutions in dimension 2

@ Existence of travelling waves in any dimension [Béthuel et al 08, Maris 12] for
speeds smaller than the “sound speed”. Some travelling waves are constructed as
minimizers of the energy for a fixed momentum P = f@aﬂp. Travelling waves that
are not minimizers are known to exist too.

@ Orbital stability of travelling waves in some cases [Chiron-Maris 17].

Corentin Audiard, LJLL Dyn. EK



Background for the Euler-Korteweg system

@ Local well-posedness in HS x (pg + HSt1), s > d/2 + 1, pg € RT*, inf pj, > 0.
(+blow up criterion with a non vacuum condition on p) [BDD 06]
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Background for the Euler-Korteweg system

@ Local well-posedness in HS x (pg + HSt1), s > d/2 + 1, pg € RT*, inf pj, > 0.
(+blow up criterion with a non vacuum condition on p) [BDD 06]

@ In the case of quantum hydrodynamics, in dimension 2 and 3 existence of global
weak solutions [Antonelli-Marcati 09].

@ In the case of quantum hydrodynamics with g(p) = p — pg in dimension at least 3
and for small initial data, (EK) has global strong solutions [A-Haspot 14].

Corentin Audiard, LJLL Dyn. EK



Background for the Euler-Korteweg system

@ Local well-posedness in HS x (pg + HSt1), s > d/2 + 1, pg € RT*, inf pj, > 0.
(+blow up criterion with a non vacuum condition on p) [BDD 06]

@ In the case of quantum hydrodynamics, in dimension 2 and 3 existence of global
weak solutions [Antonelli-Marcati 09].

@ In the case of quantum hydrodynamics with g(p) = p — pg in dimension at least 3
and for small initial data, (EK) has global strong solutions [A-Haspot 14].

@ Weak strong uniqueness [Giesselmann-Tzavaras]

@ In dimension 1, existence of traveling waves, stability condition a la
Grillakis-Shatah-Strauss. [Benzoni-Danchin-Descombes-Jamet 05]

Corentin Audiard, LJLL Dyn. EK



Two “hidden” structures

Nonlinear structure For u irrotational the system (EK) has an antisymetric structure

~ (P 0 div SH/ép\
o <u> + <v o> <6H/5u> =0 )

1 1 _—
with H = / G(p) + EK(p)|Vp\2 + §p|u\2, G primitive of g.
R2
In particular, there is the energy conservation

d d 1 1
*H - G 7K V 2 — 2:0,
gt Hex dt/Rd (/>)+2 (0)IVpl +2ﬂ|U\
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Two “hidden” structures

Nonlinear structure For u irrotational the system (EK) has an antisymetric structure

~ (P 0 div SH/ép\
o <u> + <v o> <6H/5u> =0 )

1 1 _—
with H = / G(p) + EK(p)|Vp\2 + §p|u\2, G primitive of g.
R2
In particular, there is the energy conservation
d d

1 1
—Hexk=— | G ~K(p)IVpl® + S pluf? =0.
Giex =5 [ G0+ ZK()IToR + Golu

Similarity with the Gross-Pitaevskii energy o = /pe/®/2, 8 + Asp = (|92 — 1)4:

10 (p=12 Vol | pluf
H, = = ad
6P 2 ) 2 T ap T a2 &

T (vl -1y 2
= = —— 4+ |VY|°d,
2 )oa 5 +[Ve|=ax
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Due to the invariance by translation of the equations, there is also conservation of the
“momentum”

Plo) = [ (o= muo,

where pg is a constant state such that lim p(x) = po. The same is also true for
o0
Gross-Pitaevskii

Par(p.v) = [ (o= tudc= [ GV .

This analogy paves the way to the existence of traveling waves by constrained
minimization.
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Linear structure
For simplicity, consider p = 1 4 r, u = V¢, the linearized system reads

81r+A¢ :Ov
orp — K(1)Ar+g'(1)r =0.

Equivalently, setting 7 = /K(1)r, a= /K(1), z=T+ i¢

ofr + al¢ =0,
O — aAT + g'(1), /ﬁ? =0,

o iz +anz=g(1), /ﬁRe(z). (LEK)

If g’(1) > 0 this is (almost) the linearization of the Gross-Pitaevskii equation
Oy + A = (|2 — 1) neary =1 :

i01z + Az = 2Re(z). (LGP)
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Main results

© Main results
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Main results:

Theorem (A.-Haspot 16)

Ifg'(po) > 0, d > 3, for small, smooth, and irrotational initial data the local strong
solution is global. Moreover, the solution scatters, i.e. converges to a solution of the
linearized system as t — co.
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Main results:

Theorem (A.-Haspot 16)

Ifg'(po) > 0, d > 3, for small, smooth, and irrotational initial data the local strong
solution is global. Moreover, the solution scatters, i.e. converges to a solution of the
linearized system as t — co.

v

Theorem (A. 17)

With the same assumptions, in dimension 2, there exists travelling waves of arbitrarily
small energy.

Remarks:
@ Smallness is required for ug, not its potential ¢yg.
@ The smallness and smoothness can be quantified.

@ Theorem 2 is an obstruction to scattering in dimension 2, but there may exist
dispersive solutions.
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Second theorem

e Ideas for the second theorem
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Second theorem

Sketch of proof of the second theorem

Based on variational methods, in the spirit of [Bethuel-Gravejat-Saut 08] for the
Gross-Pitaevskii equation.

In the irrotational case u = V¢, a travelling wave is (up to symmetries) a solution of

{ —cdyp +div(pV) =0,
(Tw)

—co19 + |V2/2+ g(p) = K(p)Ap + 3K'(p)|Vpl?
which can be recast as

SH = csP,
2 2
where H(p,¢) = / K(p)|Vpl|* + p|V| + Glp)ax,
R

d 2
/Rd(p—na@.

l.e. a solitary wave can be seen as a critical point of H — cP or a constrained minimizer
of H with P constant.

P(p, #)
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Second theorem

We follow the constrained approach. Main issues:

@ If the minimizer exists, its smoothness is not clear from the elliptic equation it
satisfies,
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Second theorem

We follow the constrained approach. Main issues:

@ If the minimizer exists, its smoothness is not clear from the elliptic equation it
satisfies,

@ Even in the simple case G(p) = (p — 1)?/2, the functional
K(p)|Vpl? + p|Vo|?
Hp, &) = / (P)IVPl + pIVEl
Rd 2

defined) on H' x M1,

+ G(p)dx is not coercive (and not even
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Second theorem

We follow the constrained approach. Main issues:

@ If the minimizer exists, its smoothness is not clear from the elliptic equation it
satisfies,

@ Even in the simple case G(p) = (p — 1)?/2, the functional
K(p)|Vpl? + p|Vo|?
Hp, &) = / (P)IVPl + pIVEl
Rd ) 2
defined) on H' x H',

@ Even if there is coercivity, smoothness, the direct minimization approach on R? is
difficult due to the lack of compactness of minimizing sequences.

+ G(p)dx is not coercive (and not even
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Second theorem

Scheme of proof
@ New coercive functional H with H(p, ) = H(p, ¢) if ||p — 1|| << 1.
@ Constrained minimization of H on R2/(2nxZ)? instead of R2
@ Smoothness of the minimizers (pn, un), a priori estimates

@ Concentration compactness argument on up
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Second theorem

Minimization and smoothness for small data:
Existence of minimizers (on the torus) is easy. Smoothness can not be obtained
directly:

ue H Au=|VuP = Avel' = ue W' < H'.

(and most likely not true: large traveling waves of GP have vortices)
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Second theorem

Minimization and smoothness for small data:
Existence of minimizers (on the torus) is easy. Smoothness can not be obtained
directly:

ue H Au=|VuP = Avel' = ue W' < H'.

(and most likely not true: large traveling waves of GP have vortices)

For ||r||41 << 1, model problem Ar = |Vr[2 + f. Since H'/2 — [* and interpolation

Arl 2 V2 + 11l 2 S IVrll2lV2rll 2 + N1l

<
= [Arllz S (il + il

Then bootstrap — solutions of (TW) are C>°, with

lp—1lloe << 1= H(p, ) = H(p, ).

Corentin Audiard, LJLL Dyn. EK



Second theorem

A short glimpse of the concentration compactness argument:
@ Set Hpin(p) = inf{H(p, u) : P(p,u) = p}. Then Hy, is strictly subadditive.

@ Let (pn, un) be a constrained minimizer on the torus R?/(27nZ)?, embed the torus
in R2.

@ Assume dichotomy occurs, i.e. there exists two profiles (o', u'), (0?, u?) such that
H(pn, un) — H(p',u")+H(p?, 1?), P(pn, tn) — P(p', u")+ P(p?, U?) := ps + po.

One can prove
liminf H(pn, tn) < Hmin(p),

thus
Humin(P1) + Hmin(p2) < H(P1 ) U1) + H(sz U2) < Hnin(p)

This contradicts the subadditivity.
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Second theorem

Main issue is “spreading”, i.e.
un — 0 unif. on Q2 and ||u,7HH1(Q) - 0.
This is forbidden by the key estimate

llp = oo (key << 1 = ‘/KC h(p, ¢) — co(p, p)ax| << h(p, ).

to be understood as

“the energy spreads similarly to the momentum”
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Second theorem

Some (very open) perspectives:
@ solitary waves in higher dimensions, stability
@ more precisions on their minimal energy,
@ Global existence in dimension one,

@ finite time blow up.
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Second theorem

Thank you for your attention
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