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General structure and overview

• Relate the PDE to the numerical approximation.

• Semi-discrete approximation in space, time continuous.

• Linear problems and smooth nonlinear problems.

• All approximations of the form: Ut + AU = F.

• What can we say about A based on knowledge of A + AT ?

• Summation-by-parts and weak boundary conditions.

• Multi-block, finite volume + discontinuous Galerkin
techniques.

• The nonlinear incompressible Navier-Stokes equations.

• The coupling of different types of PDE’s.



Additional read-up

• JNO: A Roadmap to Well Posed and Stable Problems in
Computational Physics, J. Nordström, Journal of Scientific
Computing, Volume 71, Issue 1, pp. 365-385, 2017.

• GUS: High Order Difference Methods for Time Dependent
PDE, Bertil Gustafsson, Springer-Verlag 2008.

• GKO: Time Dependent Problems and Difference Methods,
Bertil Gustafsson, Heinz-Otto Kreiss, Joseph Oliger, John
Wiley & Sons, 1995.



Well posed problems

Ut + PU = F(x, t), x ∈ Ω, t ≥ 0 (1a)
BU = g(x, t) x ∈ δΩ, t ≥ 0 (1b)

u = f (x) x ∈ Ω, t = 0 (1c)

U = dependent variable
P = differential operator in space
B = boundary operator

data


F = forcing function
g = boundary data
f = initial data



Equation (10) is Well-Posed if U exists and satisfies

||U||2I ≤ K
(
||f ||2II + ||F||2III + ||g||2IV

)
. (2)

K independent of data F, f , g.

Why is (iii) important? Consider the perturbed problem

Vt = PV + F + δF, x ∈ Ω, t ≥ 0 (3a)
BV = g + δg x ∈ δΩ, t ≥ 0 (3b)

V = f + δf x ∈ Ω, t = 0. (3c)



(12)-(10)⇒W = V −U, P = linear operator.

Wt + PW = δF, x ∈ Ω, t ≥ 0 (4a)
BW = δg x ∈ δΩ, t ≥ 0 (4b)

W = δf x ∈ Ω, t = 0. (4c)

Apply (iii) to (4)⇒

||W||2I ≤ K
(
||δf ||2II + ||δF||2III + ||δg||2IV

)
. (5)

∴W = V −U small if K, δf , δF, δg small!

Uniqueness follows directly from (5).



Figure: A good numerical approximation possible. Choice of
numerical method next step.

Figure: A good numerical approximation NOT possible. Modify the
problem (in practice change boundary conditions).



Examples:

Existence

ux = 0 u = constant
u(0) = a
u(1) = b a , b ⇒ too many b.c.’s !

Uniqueness

uxx = 0 u = c1 + c2x
u(0) = a u = a + c2x ⇒ too few b.c.’s !

Boundedness

u = a + c2x no bound⇒ too few b.c.’s !



Example:

ut = −ux, x ≥ 0, t ≥ 0
Bu = g, x = 0, t ≥ 0

u(x, 0) = 0, x ≥ 0, t = 0

P = − ∂
∂x ,B = 1 + β ∂∂x

Laplace⇒ sû + ûx = 0⇒ û = c1e−sx

i) β = 0, c1 = q̂⇒ û = q̂e−sx, Well posed

ii) β , 0 c1(1 − βs) = q̂⇒ û =
q̂

1−βs e−sx, Ill posed



Nonlinear problems
(see Kreiss and Lorenz 1989)

• Linearization principle: A non-linear problem is
well-posed at u if the linear problem obtained by
linearizing all the functions near u are well-posed.

• Localization principle: If all frozen coefficient problems are
well-posed, then the linear problem is also well-posed.

Ut + UUx = 0, Nonlinear
Ut + Ū(x, t)Ux = 0, Linear

Ut + ŪUx = 0, Frozen coefficients

Note: Principles valid if no shocks present.



Summary of well-posedness

A problem is well-posed if

• A solution exists (correct number of b.c.)
• The solution is bounded by the data (correct form of b.c.).

• The solution is unique (follows from bound).

A nonlinear problem is related to well-posedness through the
Linearization and Localization principles .

If a problem is not well-posed, do NOT discretize. Modify first
to get well-posedness. In practice: change b.c.!



Boundary conditions

Figure: Where? How many? What form?

Ut + P(U,
∂
∂x

)U = F(x, t), x ∈ Ω, t ≥ 0

LU = g(x, t) x ∈ δΩ, t ≥ 0
u = f (x) x ∈ Ω, t = 0



IBVPs “Roughly Speaking”

P + (L)→ P̃, F + (g)→ F̃
⇒

Ut + P̃U = F̃
U(x, 0) = f

P̃ = generalized operator, F̃ = generalized data.

Eigenvalue analysis, associate P̃ with a matrix:

P̃ = X(ΛR + iΛI)X−1

• Hyperbolic: ΛR
≈ 0 (Euler, Maxwell, Wave propagation)

• Parabolic: ΛR > 0 (damping, heat, diffusion)
• Incompletely Parabolic: ΛR

≥ 0 (N-S, mixed systems)
• Well-posed: |ΛR

| < ∞



Conflicting demands on the boundary operator

• (i) Must choose L such that P + L = P̃ = bounded operator.
• (ii) Must choose L such that we have data LU − g = 0.

→ (i) and (ii) often in conflict←

Ex : U = U∞, Ux = 0, αU + βUx = αU∞

Figure: Examples of boundary conditions that could be chosen.



Definitions and concepts

ut = Pu + F, 0 ≤ x ≤ 1, t ≥ 0
Bu = g x = 0, 1 (1)

u = f 0 ≤ x ≤ 1

Define scalar products and norms

(u, v) =

∫ 1

0
u∗Hvdx, ||u||2 = (u,u)

where H(x) positive definite Hermitian matrix.

Definition: Let V be space of differentiable functions satisfying
the homogeneous boundary condition Bu = 0. The differential
operator P is semi-bounded if for all u in V

(u,Pu) ≤ α||u||2, α = const.



If a solution exists, semi-boundedness guarantees
well-posedness since

d
dt
||u||2 = 2(u,ut) = 2(u,Pu) ≤ 2α||u||2

Existence?

ut = ux, 0 ≤ x ≤ 1, t ≥ 0
u(0, t) = u(1, t) = 0
u(x, 0) = f , 0 ≤ x ≤ 1

2(u,Pu) = u2
|
1
0 = 0, ∴ P is a semi-bounded operator

However, the boundary condition at x = 0 is not correct since
u = f (x + t) if x + t ≤ 1 and zero otherwise.

∴ No existence, we must restrict semi-boundedness.



Definition: P is maximally semi-bounded if it is semi-bounded
in V but not in any space with less number of boundary
conditions.

In our example V is too “small” for allowing existence, must be
made “bigger” by dropping b.c. at x = 0.

V = {u(x),u(0) = 0,u(1) = 0} ⇒ (u,Pu) = 0,V “too small”.

V = {u(x),u(1) = 0} ⇒ (u,Pu) = −
u(0)2

2 ≤ 0,V “perfect”.

V = {u(x)} ⇒ (u,Pu) =
u(1)2

2 −
u(0)2

2 ,V “too large”.



Definition: The IBVP (1) is well-posed if for F = g = 0, a unique
(i) solution exists (ii) satisfying

||u||2 ≤ k2e2αt
||f ||2 (iii)

K, α are constants independent of the data f .

Definition: The IBVP (12) is strongly well-posed if a unique (i)
solution exists (ii) satisfying

||u||2I ≤ k2e2αt
(
||f ||2I +

∫ t

0

[
||F||2I + ||g||2II

]
dτ

)
(iii)

k, α are constants independent of the data F, f , g.

Note that different norms exist in (iii).



Boundary conditions

Where? How many? Of what form?

ut + aux = 0; 0 ≤ x ≤ 1; t ≥ 0

1. Physical intuition

“Information comes from left.” a > 0 b. at x = 0.
“Information comes form right.” a < 0 b.c. at x = 1.

2. The energy-method

d
dt
||u||2 = au2

x=0 − au2
x=1

a > 0⇒ growth term removed/limited by b.c. at x = 0.
a < 0⇒ growth term removed/limited by b.c. at x = 1.

3. Laplace/Normal mode theory (not in this course).



ut = εuxx, 0 ≤ x ≤ 1, t ≥ 0

1. Physical intuition
“heat everywhere?”⇒ b.c. at x = 0, 1.

2. The energy method

d
dt
||u||2 + 2ε||ux||

2 = 2εuux |
1
0 = ε

[
u
ux

]T [
0 1
1 0

]
︸︷︷︸
λ=±1

[
u
ux

]∣∣∣∣∣∣1
0

Always one negative eigenvalue, always one growth term at
each boundary. ⇒ b.c. at x = 0, 1.



ut + Aux = 0, 0 ≤ x ≤ 1, t ≥ 0, A =

[
1 α
α 1

]
.

1. Physical intuition ?

2. The energy method

d
dt
||u||2 = uTAu

∣∣∣0
1 = (XTu)TΛ(XTu)

∣∣∣0
1

A = XΛXT, Λ =

[
1 + α 0

0 1 − α

]
, X =

1
√

2

[
1 1
1 −1

]

x = 0 (i) α < −1 ⇒ 1 pos. eig. ⇒ 1 b.c.
(ii) − 1 < α < 1 ⇒ 2 pos. eig. ⇒ 2 b.c.

(iii) 1 < α ⇒ 1 pos. eig. ⇒ 1 b.c.

Minimal nr for maximal semi-boundedness and uniqueness !



The energy-method for choice of boundary conditions

A general conservation law in two
dimensions can be written

ut + ( Au︸︷︷︸
FI

)x + ( Bu︸︷︷︸
GI

)y = ε

(C11ux + C12uy︸            ︷︷            ︸
FV

)x + (C21ux + C22uy︸           ︷︷           ︸
GV

)y

 .
ut + (FI)x + (GI)y = ε(FV

x + GV
y )

The matrices A,B,Cij are assumed constant and symmetric.



Energy∫
Ω

uTutdΩ︸       ︷︷       ︸
1
2 ||u||

2
t

+

∫
Ω

uTFI
x + uTGV

y dΩ︸                   ︷︷                   ︸
1
2 (uTAu)x+ 1

2 (uTBu)y

= ε

∫
Ω

uTFV
x + uTGV

y dΩ︸                   ︷︷                   ︸
(uTFV)x+(uTGV)y−(uT

x FV+uT
y GV)

Green - Gauss⇒

||u||2t +

∮
∂Ω

uTAudy − uTBudx =

∮
∂Ω

(uTFV)dy − (uTGV)dx =︸                                                                ︷︷                                                                ︸
Boundary Terms = BT

−2ε
∫

Ω

uT
x FV + uT

y GVdΩ︸                         ︷︷                         ︸
Dissipation = DI

.



DI = −2ε
∫

Ω

[
ux
uy

]T [
C11 C12
C21 C22

]
︸      ︷︷      ︸

must be ≥ 0

[
ux
uy

]
dΩ ≤ 0

BT = −

∮
uT(Adx − Bdx)u − 2εuT(FVdy − GVdx) =

−

∮
uTÃu − 2εuT

[
C̃xux + C̃yuy

]
ds

Ã =(A,B) · ~n, C̃x = (C11,C21) · ~n, C̃y = (C12,C22) · ~n

Boundary Conditions? Where? How many? What form?



BT = −

∮ 
u
εux
εuy


T 

Ã C̃x C̃y
C̃x 0 0
C̃y 0 0




u
εux
εuy

 ds =

= −

∮ 
W+
W0

W−


T 

Λ+ 0 0
Λ0 0

0 0 Λ−



W+

W0

W−

 ds.

• Number of boundary conditions = Number of negative
entries in Λ−.

• Where? On all points on boundary where negative
eigenvalues exist.

• Form of boundary conditions? W− = RW+ + g for a choice
of R that leads to a bound. See JNO.



Summary of well-posedness for IBVP

• A maximally semi-bounded differential operator leads to
well-posedness for homogeneous boundary conditions
(g = 0) and non-zero initial data f and forcing function F.

• Strong well-posedness with (g , 0) require further analysis.
Use the procedure in JNO (or Normal mode analysis).

• The choice of boundary conditions (choice of matrix R) is
the crucial part in general.

• For the Euler and Navier-Stokes also problematic to
integrate by parts. Splitting, change of variables and a
particular choice of norm is probably necessary.



Semi-discrete approximations of IBVPs

d
dt

uj = Quj + Fj, j = 0...N

Bhu = g (2)
uj(0) = fj, j = 0...N

Bhu = g contains a complete set of boundary conditions, both
for the IBVP and purely numerical ones.
The number of bondary conditions is equal to the number of
linearly independent conditions. (No problem with existence).
The discrete scalar product and norm typically have the form

(u, v)h =

N+1∑
j=1

〈uj, H̃jvj〉h, ||u||2 = (u,u)h

where H̃j positive definite symmetric matrix.



Definitions and concepts

Definition: Let Vh be the space of grid-vector functions u that
satisfies Bhu = 0. The difference operator Q is semi-bounded if
for all u ∈ Vh

(u,Qu) ≤ α||u||2h
holds. α = bounded constant independent of Vh, h.

Definition: The problem (2) is stable for F = g = 0 if

||u||h ≤ keαt
||f ||h

holds. k, α are constants independent of f , h.

Theorem: If Q is semi-bounded, then (2) is stable.

Note 1: No problem with existence and number of boundary
conditions and maximal semi-boundedness.



Definition: The problem (2) is strongly stable if

||u||2h ≤ k2e2αt
(
||f ||2h +

∫ t

0

(
||F||2h + ||g||2B

)
dτ

)
. (3)

k, α are bounded constants independent of F, f , g, h.

Why is (3) important?
The numerical error ej(t) = uj(t) − u(xj, t) satisfies

d
dt

ej = Qej + O(hp), j = 0...N

Bhe = O(hq) (4)
ej(0) = O(hr), j = 0...N

Now, apply (3) to (4)⇒

||e||2h ≤ k2e2αt
(
||O(hr)||2h +

∫ t

0

(
||O(hp)||2h + ||O(hq)||2B

)
dτ

)
≤ O(hmin(p,q,r)).



Definition: The problem (2) is time-stable or strictly-stable if the
corresponding estimate for (1) with F = g = 0 has the estimate

||u|| ≤ kceαct
||f ||

and the estimate of (2) with F = g = 0 is

||u||h ≤ kdeαdt
||f ||h

where αd ≤ αc + O(h).

Not only the solution but also the time growth converges.



Example: d
dt

uj = Douj, j = 0...N

u−1 = 2u0 − u1, uN+1 = 0
uj(0) = fj, j = 0...N

The linear extrapolation at j = 0 give a one-sided approximation

(u0)t = (u1 − u0)/h.

Define a new scalar product:

(u, v)h = δhu0v0 +

N∑
j=1

ujvjh = uTPv, P = hdiag(δ, 1, 1, ...1)

(u,Qu) = δu0(u1 − u0) + u1(u1 − u0)/2... = −δu2
0 + u0u1(δ − 1/2)

The choice δ = 1/2⇒ (u,Qu) = −δu2
0, ∴ Q = semi-bounded!



Example:

Consider the Cauchy (u(±∞, t) = 0) problem for

ut + aux = 0, a = a(x, t).

The energy method gives

d
dt
||u||2 =

∫
∞

−∞

axu2dx ≤ |ax|∞||u||2.

∴ a ∂
∂x is a semi-bounded operator for a well-posed problem.

A naive discretization using central difference operators yields
ut + AQu = 0 and

d
dt
||u||2h = −uT(AQ + (AQ)T)u ,

∫
∞

−∞

axu2dx.



The skew-symmetry Q + QT = 0 does not help.

Go back to PDE

aux = α(au)x + βaux + γaxu = (α + β)aux + (α + γ)axu

implies β = 1 − α, γ = −α.

The energy method again following the ”advice” above leads to

1
2

d
dt
||u||2+ αu(au)|∞−∞ −

∫
∞

−∞

(1 − 2α)auuxdx =

∫
∞

−∞

αaxu2dx.

The choice α = 1/2 leads to

d
dt
||u||2 =

∫
∞

−∞

axu2dx,

which we of knew already. What about the semi-discrete case ?



Semi-discrete again (not so naive this time)

Ut +
1
2

Q(AU) +
1
2

AQU −
1
2

AxU = 0.

The energy method yields

2UTUt∆x = −UT(QA + AQ)U∆x + UTAxU∆x

=
[
(QU)T(AU) − (AU)T(QU)

]
∆x + UTAxU∆x

= UTAxU∆x.

(
||U||2h

)
t
= UTAxU∆x ≤ δ||U||2h →

∫
∞

−∞

axu2dx

∴ The approximation is semi-bounded..

∴ Convergence to the PDE result. (J. Nordström JSC 2006).

∴ The same technique must be used for nonlinear problems.



The relation between well-posedness and stability

Comparision

Continuous Semi-discrete
Ut = PU Ut = QU
LU = g BU = g
U = f U = f

Semi-boundness
1
2 ||U||

2
t

1
2 (||U||h)t

= (U,PU) =(U,QU)
≤ αc||U||2 ≤ αd||U||2h

Well-posedness and Stability
||U|| ≤ eαct

||f || ||U||h ≤ eαdt
||f ||h

Time/Strict-Stability
αc ≤ αd + O(h)



End of Lecture 1


