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Stability problems for numerical approximations

1
Continuous (||u|*> = f u?dx)
0

d
up+auy =0, w0 =g(t) = —lul=ag’(t) —au(l,ty
dt ~—~—
N1 >0 >0
Semi-discrete (||ull} = )  u;u;Ax)
i=1
uit+a(w)=o, =g, = ZulP = agtu —auyuy
2Ax dt N S N——
- =2

. How do we implement boundary conditions for PDE?

. How do we choose numerical boundary conditions?



Summation-By Parts (SBP) operators for

FE, SE, DG methods
ur+au, =0
N
Letu=LT(x) a(t) = ) ai(t)pi(x).
i=0

L= 01, - on)', &= (ag,a1,an)!

Insert into (1) =

1 1
LTd@ +alld=0= f LL dx @ + af LLldxd =0
0 0

— —_—
P Q

P(i)t +61Q&): 0

@

)



Intergration-by-parts

1
P& +al L"|'@—a | L,LTdx &=0= Pd +aBd —aQ"&@ =0
0 0

o $oPo o1
P1¢0
1 (Pl 1

B=LL|,=|" |Ipo §1 - On]|, =

o PNPN],
For Lagrange polynomials we get

0 1 -1

0 0

0
_r 7t _ _ _
B=LL| = -



Summation-By-Parts (SBP) operators

Comparing

Pd;+aQd =0 with Pd;+aBd—aQ'd =0

leads to Q = B— Q.

We derived P, Q using basis functions and integration by parts.
e P symmetric positive definite: y' Py = fol(LTy)T(LTy)dx.
e Q almost skew-symmetric: Q + QT = fol LLT +L,LTdx =B

Later, we will do this directly without basis functions and
integration by parts.



Energy estimates
Continuous

%nunz = a(u%(0,1) - u*(1, 1))

Semi-discrete

T _oT
%%(aTPa)+a5z’T(Q-;Q +Q 2Q )07:0 =

d
s = a(ag — o).

e Similar stability results for the different energy rates.
¢ Quadratic boundary terms appear, no indefinite terms.

e Perfect “numerical boundary conditions”.



General SBP operators

(u,vy) = J; 1 uvxdx = uvly — uvly — (ux, v) 3)
We want to mimic this discretely such that
(u, Dv)p = u'PDv = unon — ugvg — (Du, v)p.
u=(ug,uy, ...un)’, Dand P (N + 1) X (N + 1) matrices

e Does P and D exist ? (Yes, if one uses basis functions)
e What symmetry requirements are needed ?
e How to construct P and D ?



Example:

du]‘ D"'u]" ] =0
E = Dl/l]‘, DM] = D()l/l]', ] * O,N
D-uj, j=N
N-1
Choose scalar product: (u,v), = %uovg +h Z ujv; + EuNUN
j=1
(u,0), = u'Pv, P =hdiag(1/2,1,1,...,1,1/2)
-1 1 0 -1 1 0
-1/2 0 1/2 -1 0 1
=3 ,PD=Q=1 e
-1/2 0 1/2 -1 0

-1 1 -1



|
—_
o
o

0 0 0
Q+Q"= KPRV P
0 0 0
0 0 1
We get
Q+Q"

(u,Du) = u' PDu = u"Qu = u"(

1
> u = E(ui] —1u?).

¢ Exactly the analytical result.

e Higher order approximations in the same way, but with
more involved algebra.



High order SBP operators for finite differences

Pg‘, Qé are transposed along the anti-diagonal

Theorem (“block norm”) For interior order of accuracy 2S, P, Q

exist such that P = PT > 0, Py = block matrix and Q + QT = B
with order 2S5 — 1 near boundaries.

Theorem (“diagonal norm”) For interior order of accuracy 28,

1<S<5,P,Qexist such that P = PT > 0, Py = diagonal matrix,
and Q + QT = B with order S near boundaries.




The P matrix (or P norm) is an integration operator (both block

and diagonal) of order 25 = interior accuracy.

Let: ¢ smooth function, (1; = qb injected at the grid points.

Then: d) smooth function, ( ) = aq; injected at the grid points.

LetT = (1,1,..,1,1). We get
a—¢ = ¢n = Po + O(h™),

T"P(P'QP) = 17Q¢ = 17 [-Q" + B| ¢ = —~(QD)" ¢ + dw — .

e Integration operator of order 2S.

e Exact “integration back” of the numerical derivative.



Construction of SBP operators

Symmetry requirements: make ansatz on elements, aim for
P=P" >0, Q+Q' =diag[-1,0,0,..,0,1].

Accuracy requlrements:

ploi=0, Q=0
plog=1, Q#=P1
PlQx2 = 2%, Qi = 2pP%

T=(1,1,..,1,1), %=(0,Ax,2Ax,..1), x2=(0,A%..,1)

e Solve for unknowns in P, Q using e.g. Maple.
¢ Non-unique operators, more unknowns than equations.
e Parameters modify bandwith, errors and spectral radius.



Summary: first derivative SBP operators

e SBP operators mimic Integration-by-Parts.
e u, ~P1Qu,P=P'>0,Q+Q" =B
o iy ~ (P1Q)%u, (wide).
o Uy ~ PY(=A+BD), A+ AT >0 (compact)
¢ Diagonal norm operators most important.
e Numerical boundary conditions form SBP operators.
e SBP operators for “all” orders exist.
¢ References
e B. Strand, JCP 1994.
e M.H. Carpenter, J]. Nordstrom & D. Gottlieb JCP 1999.
o K. Mattsson & J. Nordstrom, JCP 2004.
e M. Svird & J. Nordstrom, (Review) JCP 2013.



What about boundary conditions?

up +au, =0, u(0,t) = g(t)

(i) Multiply with smooth function a and integrate.

1 1 1 1
f autdx+af audx =0 = f audx+an ul(l)—af ayudx =0
0 0 0 0

(if) Change u(0, t) to g(t) (DG procedure) and integrate back.

1 1
f audx +a f auy = —a(0)a (u(0,t) — g)
0 0

penalty term

(iii) Stability? Change @« — u and integrate.

d
allull2 :ag2 - auz(l, £) —a(u,t) — g)2



More on boundary conditions

Padi+aQd=0, Q+Q'=B = P& +aBd-aQ'd=0.
DG trick: replace “what you have with what you like”
ap — g(t).
—8(t) —a(ao - (1))
0 0
Padi+a| . |-aQ'@=0, = Pdi+aQd= _
aN 0

e DG uses a weak penalty formulation.

14 (47pa) +ad” (Q LS ‘ZQT)& - —aao(ao—g() =

%Ilalll% = a(g(t)* — a3,) — alag — g(1))*.

o DC:ic enerov cfable with ontHmally charpd enerov ectimatree



Weak boundary procedure - SAT

“Simultaneous Approximation Term”

How do we impose boundary conditions that lead to stability ?
d

ur+auy =0, u0,t) =g = EHuH2 = agz - auz(l, t)
How do we mimic this discretely ?

up+aP~'Qu = B(ug — g), RHSis accurate, but what is B?
Energy

d

u Puy+au” Qu = uTPB(uo—g), = a”u”% = au%+2uTPB(uo—g)—au%\]

We need
BT = au} + 2u" PB(ug — §) < ag*.



Let

B(up—g) = aP_l(uo —-9eo, e0=(1,0,0, ..., O)T, o = unknown.

This leads to
) N a+20 —of|ug
BT = aug + 20uo(uo agz + [ s —a] |g]
= 8" —a(ug —g)2
ifo =—a.

AR = ag? — au?, - a(ug — )>

.. “More stable than the IBVP”.



SBP-SAT for advection-diffusion problems

Up + AUy = Elyy 0<x<1t=0 (4a)
Lou = go x=0,t>0 (4b)
Liu=g x=1t>0 (40)

u(x,0) = f(x) 0<x<1,t=0 (4d)

Energy method for determining Lo, L1. We consider a,e > 0.

1 1 1
f ULy + au,dx = ef UllyydX = (llull2 = f ude)
0 0 0

d
Ellull2 + 2¢||uy|? = (au2 —2€U uy)y — (au2 — 2€Uly)1-
Note that

BT = au® — 2euu, =a”! [(au —euy)? - (eux)Z] .



BT = a7 [(au - eu,)? - (euy)?|

Atx =0, let
Lo=a—e—
0 a €8x
Atx=1,let
J
[{=e—
! €8x
This leads to

BTy =a" [gé - ((—:ux)z] , BTy=a! [(au - (—:ux)2 - gﬂ ,
or formulated in another way

2 2
_ g _
BT, = 70 —a'aug - g0)*, BTy = ;1 —a (aun — 1)

.. Well-posed boundary conditions with a bounded energy.



U + aP_lQu = eP_lqu + P‘loo(auo — €(uy)o — go)eo+
+ Pl oy (e(ux)n — g1)en ®)
u©0) =f
The parameters og, 01 will be determined by stability .

requirements. We also used u, = P'Qu, ey =(1,0,0,...,0)7,
en = (0,0,...,0,1)T.

Energy
ul Pug+au’ Qu = eu” Quy+agug(auo—e(iix)o—go) +0o1un(€(tx)N—51)

(6)
Add transpose of equation (6) to itself =

u' Puy + utTPu +au’ (Q + QNu — e(u” Quy + uzQTu) +2BT. (7)

@ @ ®)



P N T

(1) = Z"Pu) = Z(lul)

) =au"(Q+QNu =au"Bu = a(u?\] - ué)

(3) = e(u’ Quy + uzQTu) = e’ (-Q" + B)uy + uz(—Q + B)u)
= - QTu, + quu) +e(u’ Buy + uZBu)

utQTuy + ulQu = 2uTQu = 2uT PP~'Qu = 2ul Pu, = Zelluxlllz,

uTBu, + uzBu =2u'Bu, = 2un ()N — 2up(uy)o

d
Tl + 2elu* = (aug — 2euo(1u)o) = (auy, — 2eun(u)n)

from equation

= 20gug(aug — €(ux)o — go) + 201un(e(tx)N — &1)

from penalty terms



Choose g9 = —1, 01 = —1 such that mixed the uu, terms cancel.

RHS = —aué + 2u0g0 — aui, +2ung1

2 2 2 2
_ 8 8o 2

1921 2
—— —aug + 2uggo +— —— — auy + 2ung1
a a 0 80T T N 8

—a~Y(aug—go)? —a~Yaun—-g1)?
4 (1) + 2ellil2 = £ — a aug — go)? + 51 — 4 auy — g1)?
dar P xllp = 0— &80 7 N —&1

a

.. Exactly the same form as the continuous energy estimate.



Summary of SAT procedure

Find well-posed boundary conditions that lead to an
energy estimate.

Construct penalty/forcing terms that impose these
boundary conditions.

Choose penalty coefficient such that indefinite terms are
removed.

Aim for the same/similar estimate as in the continuous
case, possibly with a small damping term added.
References

e JNO

e M. H. Carpenter, D. Gottlieb & S. Abarbanel JCP 1994.

e M. H. Carpenter, J. Nordstrom & D. Gottlieb JCP 1999.



Second derivative SBP operators

1
(1) = [ st = iy = o <ol 9
0
Can we construct operators that mimics (8)?

Yes, by for example using the first derivative twice.

(u, (P71 QY%u) = u" Quy = u" (=Q" + By = un(ux)n — to(ttx)o — lliixll}
since

—u"QTuy = —u"Q"P'Puy = —(P~'Qu) " Pu, = —uzPux.



Drawbacks with wide operator (P~1Q)?

e Unnecessary wide which leads to large error constant.

e Bad damping of high wave-numbers, which the PDE have.

iwx 2

Ut = Uyy U =0 = 0 = -0l
A A o N 1 . A
itjy = DoDouj 1t = 1€ = i = ~in sin?(&)
~ IWX; ~ 4- 2
ujp=DyD_uj u=ae =i =-— sm (&/2)n

For Emax = 7, there is no damping with the wide operator.



Compact second derivative SBP operator

Consider:
D@ = (P1Q)* = PTH(QP'Q) = P(-Q" + B)PTIQ) =
=P '(-Q"P'Q+BP Q)
u"PD@y = uT(-Q™P'Q + BP'Q) = —(Qu)"P~'Qu + u"BDu
= —(P7'Qu)"P(P'Qu) + u"BDu =
= —||Du||%J +u'BDu. A perfect stability result.

Can we make a compact version of this?

Yes! It has the structure:

D® = p~l(-A + BD)



Observations regarding D@ = P~}(—A + BD)

o Compact, occupies same space as P1Q.

o A+ AT > 0 for stability.

e Clumsy to use for flux-based equations.
F=AU- e(Banu + Blszu); F, =D,F.

e Certain stability complications for N-S equations since two
different first derivatives appear.

The second order accurate operator is
1 -2 1 0

(2)11—210
D=ﬁo1—21,

1 -1 0 0 3 2 35 0
g2 1o 00 0 o0
A=3l0 1 =2 1 |- D=3l0 0 0 o0



SBP-SAT for multi-block methods

up+au, =0 0 v+av,=0
x=0

u=v
Multiply with smooth function (¢(+oo, t) = 0) and integrate =

0 00
f Quy + apuydx + f Qv + aduydx =0 =

00 0
0 00 0 —00

= f Pudx + f Qudx — f apudx — f apyvdx
—c0 0 —00 0

+apo(u —v)o =0
N—
=0

No remaining terms at the interface = conservation.



up +aP;'Quu = oL Py (un — vo)en,

v + EIPI_JQRZJ = URPZ_gl(UO — UN)eg.
Note that uy, vg are located at the same position in space.
Conservation: Multiply with smooth function ¢ and integrate.

T PLus +adpT Quu = o1.Pn(un — vo)

¢ Pros + apT Qro = or¢po(vo — un)



Numerical integration using SBP operators: Q — —QT + B =

@TPLMT + ¢TPRUt - a(PZlQquT)PLu - H(Pl_leR(i))TPRu+

mimic PDE terms

—apnun + orPN(un — vo) + apovy + orP(vo — UN)

IT=interface terms that should vanish

Since ¢ smooth, we can factor out ¢g = Py =
IT = ¢po(—aun+on(un—0vo)+avo+0o(vo—un)) = Po(un—10)(0L—0R—4).

.. We have a conservative scheme if 07, = og + 4 .



Stability: Multiply with the solutions u, v and integrate =
u'PLur + o' Proy = —au%\, + av% + 2unor(un — vg) + 2090r (Vg — UN)

_|UN —a + 207y, —(GL+GR) Uun
oo ||-(oL +0r) a+20r ||vo

)\1,2 =0 +0R =* \/(GL +(7R)2 + (GL — OR —LZ)Z.

We have eigenvalues A1, < 0 if

or +or <0, the stability condition og < —a/2.

o —ogr —a =0, the conservation condition.

Note that the conservation condition is necessary for stability.



Summary of multi-block coupling

e Conservation is a natural component of a scheme, if the
PDE is conservative (necessary for correct shock speed).

e SBP-SAT + demand of conservation = provide relation
between penalty coefficients.

e Conservation necessary for stability (and dual consistency).

e Check for conservation first, next step stability.
¢ References

e M.H. Carpenter, J. Nordstrom, D. Gottlieb JCP 1999.
e J. Nordstrom et al JCP 2009.

e C.La Cognata & J. Nordstrom BIT 2016.

e J. Nordstrom & A. Ruggiu, JCP 2017.

e J. Nordstrom & F. Ghasemi, JCP 2017.



Accuracy and error estimates

up+uy =0, u©0,t)=g, u(x,0)=f

Semi-discrete

v + P71Qu
v(0)

GP_l(UQ - 9)eo (9a)
f (9b)

Insert analytical solution u into (1)

up +P7'Qu = oP Yug - Qeo + T (10a)
u(0) = (10b)

T, = truncation error from P~'Qu = u, + O(hP)

Note: No error from penalty term (with Dirichlet b.c.).



(2)-(1) with u — v = e = error =

e + P‘lQe = oP Yegey + T (11a)
e(0)=0 (11b)

Solve (3) and the exact error is known.

Note: e # T,. T, = source of error only, not the error itself.

Energy:
e Pe; + e Qe = o¢% + ) PT, =

(lel?) = €2(1 + 20) — &%, + 2¢TPT,

Stability demands that 0 < —1/2. Choose 0 = -1 =

d
Eneu2 = —(¢5 +e3) +2(e, Te). (12)



A first crude estimate

d

1
gl =~ + &) + 2e, To) < llelf + JITF - (13)

Multiply with integrating factor ™" and integrate =

1., (.
llell> =< Ee ”tf e TIPdE = O(ITII?) (14)
0

The error is equal to the size of the truncation error.

The truncation error large at boundaries and interface.
SBP(S,2S) indicates error of order S.

Laplace transform technique show that error often of order
S+R, where R=order of highest derivative in the IBVP.

M. Svird & J. Nordstrom, JCP 2006.



A second crude estimate

4
dt
Note now that %Ilel

lel® = —(e5 + ex) + 2(e, Te) < 2llellliTell (15)

> = 2||e||%||e|| which implies that (15) goes to

2 lell < T (16)

e The relation (16) indicates a linear growth in time.

e Seemingly, long time integration of hyperbolic problems
would lead to large errors, rendering the solution useless.



A third more sharp estimate

2 2
€O+€N

+ ||T,
2lelP ]Ilell [Tl
————

-1(t)

2 2
2lel] llellr = =(ey + ex,) + 2llell ITell = lells < —(

Note that 0 < n(t) < 1. Let n(t) = constant (can be relaxed).

T T
le(D)l < ™" f M| Telldt < e[| Tellmax f e dt
0 0

(e’IT B 1) (1 B E_UT) < ”Te”max

n

= e_nt”Te”max = || Tellmax




Summary of error estimates

The error for finite time is of order S+R, where S=internal
accuracy and R= order of highest derivative.

The standard error estimate give a linear error growth in
time.

A more refined error estimate where boundary effects are
included, lead to an error bound.

By mesh refinement, arbitrary accuracy at any future time.

No linear growth in time for parabolic problems even if
boundary procedure not optimal, easier problem.

Reference: J. Nordstrom SISC 2007.
Reference: D. Kopriva, J. Nordstrom, G. Gassner JSC 2017.
Reference: J. Nordstrém, H. Frenander JSC 2018?



End of Lecture 2
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