On the dynamic of the Euler-Korteweg system

Corentin Audiard, UPMC, Laboratoire Jacques-Louis Lions with Boris Haspot, Ceremade

February 2018

Plan

Ideas for the second theorem

・ロト・日本・日本・日本・日本

Euler-Korteweg system:

$$\begin{bmatrix} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t u + u \cdot \nabla u + \nabla g(\rho) = \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right), \quad (x, t) \in \mathbb{R}^d \times [0, T].$$
(EK)

 $K(\rho)$: capillary coefficient, smooth, positive on \mathbb{R}^{+*} . K can be unbounded near $\rho = 0$, an important case is $K = 1/\rho$ which corresponds to the so called quantum pressure.

 $g(\rho)$: related to the pressure by $g' = p'/\rho$, stability assumption: $g'(\rho_0) > 0$.

Gross-Pitaevskii equation

 $i\partial_t\psi + \Delta\psi = (|\psi|^2 - 1)\psi$

Aim: underline the similarities between these problems.

In the case $K(\rho) = 1/\rho$, and for irrotational flows, there is a formal equivalence between Euler-Korteweg and the nonlinear Schrödinger equation

 $i\partial_t\psi+\Delta\psi=g(|\psi|^2)\psi,$

through the Madelung transform

 $(\rho, \ u = \nabla \phi) \rightarrow \psi := \sqrt{\rho} e^{i\phi/2}.$

For technical reasons, this case simplifies a lot the analysis of the system, we focus here on the case of a general capillary coefficient.

Similarities appear both at the linear and nonlinear level.

< ロ > < 同 > < 回 > < 回 > .

э

Background for the Gross-Pitaevskii equation

- Conservation of energy $\frac{1}{2} \int_{\mathbb{R}^d} |\nabla \psi|^2 + ||\psi|^2 1|^2/2dx$, momentum Im $\int \overline{\psi} \nabla \psi dx$.
- Global well-posedness in the energy space [Béthuel-Saut 99, Gérard 06, Killip et al 11].
- If $\psi_{in} = 1 + v_{in}$, v_{in} small enough the solution scatters in dimension ≥ 3 [Gustafson-Nakanishi-Tsai 08], existence of dispersive solutions in dimension 2
- Existence of travelling waves in any dimension [Béthuel et al 08, Maris 12] for speeds smaller than the "sound speed". Some travelling waves are constructed as minimizers of the energy for a fixed momentum $P = \int \overline{\psi} \partial_1 \psi$. Travelling waves that are not minimizers are known to exist too.
- Orbital stability of travelling waves in some cases [Chiron-Maris 17].

Background for the Gross-Pitaevskii equation

- Conservation of energy $\frac{1}{2} \int_{\mathbb{R}^d} |\nabla \psi|^2 + ||\psi|^2 1|^2/2dx$, momentum Im $\int \overline{\psi} \nabla \psi dx$.
- Global well-posedness in the energy space [Béthuel-Saut 99, Gérard 06, Killip et al 11].
- If $\psi_{in} = 1 + v_{in}$, v_{in} small enough the solution scatters in dimension ≥ 3 [Gustafson-Nakanishi-Tsai 08], existence of dispersive solutions in dimension 2
- Existence of travelling waves in any dimension [Béthuel et al 08, Maris 12] for speeds smaller than the "sound speed". Some travelling waves are constructed as minimizers of the energy for a fixed momentum $P = \int \overline{\psi} \partial_1 \psi$. Travelling waves that are not minimizers are known to exist too.
- Orbital stability of travelling waves in some cases [Chiron-Maris 17].

Background for the Euler-Korteweg system

- Local well-posedness in H^s × (ρ₀ + H^{s+1}), s > d/2 + 1, ρ₀ ∈ ℝ^{+*}, inf ρ_{in} > 0. (+blow up criterion with a non vacuum condition on ρ) [BDD 06]
- In the case of quantum hydrodynamics, in dimension 2 and 3 existence of global weak solutions [Antonelli-Marcati 09].
- In the case of quantum hydrodynamics with g(ρ) = ρ ρ₀ in dimension at least 3 and for small initial data, (*EK*) has global strong solutions [A-Haspot 14].
- Weak strong uniqueness [Giesselmann-Tzavaras]
- In dimension 1, existence of traveling waves, stability condition à la Grillakis-Shatah-Strauss. [Benzoni-Danchin-Descombes-Jamet 05]

- 4 同 2 4 日 2 4 日 2

Background for the Euler-Korteweg system

- Local well-posedness in H^s × (ρ₀ + H^{s+1}), s > d/2 + 1, ρ₀ ∈ ℝ^{+*}, inf ρ_{in} > 0. (+blow up criterion with a non vacuum condition on ρ) [BDD 06]
- In the case of quantum hydrodynamics, in dimension 2 and 3 existence of global weak solutions [Antonelli-Marcati 09].
- In the case of quantum hydrodynamics with g(ρ) = ρ ρ₀ in dimension at least 3 and for small initial data, (*EK*) has global strong solutions [A-Haspot 14].
- Weak strong uniqueness [Giesselmann-Tzavaras]
- In dimension 1, existence of traveling waves, stability condition à la Grillakis-Shatah-Strauss. [Benzoni-Danchin-Descombes-Jamet 05]

< ロ > < 同 > < 回 > < 回 > < 回 > <

Background for the Euler-Korteweg system

- Local well-posedness in H^s × (ρ₀ + H^{s+1}), s > d/2 + 1, ρ₀ ∈ ℝ^{+*}, inf ρ_{in} > 0. (+blow up criterion with a non vacuum condition on ρ) [BDD 06]
- In the case of quantum hydrodynamics, in dimension 2 and 3 existence of global weak solutions [Antonelli-Marcati 09].
- In the case of quantum hydrodynamics with g(ρ) = ρ ρ₀ in dimension at least 3 and for small initial data, (*EK*) has global strong solutions [A-Haspot 14].
- Weak strong uniqueness [Giesselmann-Tzavaras]
- In dimension 1, existence of traveling waves, stability condition à la Grillakis-Shatah-Strauss. [Benzoni-Danchin-Descombes-Jamet 05]

(口) (同) (三) (三) (

Two "hidden" structures

Nonlinear structure For u irrotational the system (EK) has an antisymetric structure

$$\partial_t \begin{pmatrix} \rho \\ u \end{pmatrix} + \begin{pmatrix} 0 & \operatorname{div} \\ \nabla & 0 \end{pmatrix} \begin{pmatrix} \delta H / \delta \rho \\ \delta H / \delta u \end{pmatrix} = 0.$$
(1)

with $H = \int_{\mathbb{R}^2} G(\rho) + \frac{1}{2}K(\rho)|\nabla \rho|^2 + \frac{1}{2}\rho|u|^2$, *G* primitive of *g*. In particular, there is the energy conservation

$$\frac{d}{dt}H_{EK} = \frac{d}{dt}\int_{\mathbb{R}^d} \mathbf{G}(\rho) + \frac{1}{2}\mathbf{K}(\rho)|\nabla\rho|^2 + \frac{1}{2}\rho|u|^2 = 0.$$

Similarity with the Gross-Pitaevskii energy $\psi = \sqrt{\rho}e^{i\phi/2}$, $i\partial_t \psi + \Delta \psi = (|\psi|^2 - 1)\psi$:

$$H_{GP} := \frac{1}{2} \int_{\mathbb{R}^d} \frac{(\rho - 1)^2}{2} + \frac{|\nabla \rho|^2}{4\rho} + \frac{\rho |u|^2}{4} dx$$
$$= \frac{1}{2} \int_{\mathbb{R}^d} \frac{(|\psi|^2 - 1)^2}{2} + |\nabla \psi|^2 dx$$

Two "hidden" structures

Nonlinear structure For u irrotational the system (EK) has an antisymetric structure

$$\partial_t \begin{pmatrix} \rho \\ u \end{pmatrix} + \begin{pmatrix} 0 & \operatorname{div} \\ \nabla & 0 \end{pmatrix} \begin{pmatrix} \delta H / \delta \rho \\ \delta H / \delta u \end{pmatrix} = 0.$$
(1)

with $H = \int_{\mathbb{R}^2} G(\rho) + \frac{1}{2}K(\rho)|\nabla \rho|^2 + \frac{1}{2}\rho|u|^2$, *G* primitive of *g*. In particular, there is the energy conservation

$$\frac{d}{dt}H_{EK} = \frac{d}{dt}\int_{\mathbb{R}^d} \mathbf{G}(\rho) + \frac{1}{2}\mathbf{K}(\rho)|\nabla\rho|^2 + \frac{1}{2}\rho|u|^2 = 0.$$

Similarity with the Gross-Pitaevskii energy $\psi = \sqrt{\rho}e^{i\phi/2}$, $i\partial_t\psi + \Delta\psi = (|\psi|^2 - 1)\psi$:

$$H_{GP} := \frac{1}{2} \int_{\mathbb{R}^d} \frac{(\rho-1)^2}{2} + \frac{|\nabla \rho|^2}{4\rho} + \frac{\rho |u|^2}{4} dx$$
$$= \frac{1}{2} \int_{\mathbb{R}^d} \frac{(|\psi|^2 - 1)^2}{2} + |\nabla \psi|^2 dx$$

Due to the invariance by translation of the equations, there is also conservation of the "momentum"

$$P(
ho)=\int (
ho-
ho_0) u\,dx,$$

where ρ_0 is a constant state such that $\lim_{\infty} \rho(x) = \rho_0$. The same is also true for Gross-Pitaevskii

$$P_{GP}(\rho, u) = \int_{\mathbb{R}^d} (\rho - 1) u \, dx = \int_{\mathbb{R}^d} \overline{\psi} \nabla \psi \, dx.$$

This analogy paves the way to the existence of traveling waves by constrained minimization.

Linear structure

For simplicity, consider $\rho = 1 + r$, $u = \nabla \phi$, the linearized system reads

$$\begin{cases} \partial_t r + \Delta \phi &= 0, \\ \partial_t \phi - \mathcal{K}(1)\Delta r + g'(1)r &= 0. \end{cases}$$

Equivalently, setting $\tilde{r} = \sqrt{K(1)}r$, $a = \sqrt{K(1)}$, $z = \tilde{r} + i\phi$

$$\begin{cases} \partial_t \tilde{r} + a\Delta\phi &= 0, \\ \partial_t \phi - a\Delta \tilde{r} + g'(1)\sqrt{\frac{1}{K(1)}}\tilde{r} &= 0, \end{cases}$$
$$\Leftrightarrow i\partial_t z + a\Delta z = g'(1)\sqrt{\frac{1}{K(1)}}\operatorname{Re}(z). \ (LEK)$$

If g'(1) > 0 this is (almost) the linearization of the Gross-Pitaevskii equation $i\partial_t \psi + \Delta \psi = (|\psi|^2 - 1)\psi$ near $\psi = 1$:

 $i\partial_t z + \Delta z = 2 \operatorname{Re}(z). (LGP)$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Plan

Ideas for the second theorem

æ

イロト イヨト イヨト イヨ

Main results:

Theorem (A.-Haspot 16)

If $g'(\rho_0) > 0$, $d \ge 3$, for small, smooth, and irrotational initial data the local strong solution is global. Moreover, the solution scatters, i.e. converges to a solution of the linearized system as $t \to \infty$.

Theorem (A. 17)

With the same assumptions, in dimension 2, there exists travelling waves of arbitrarily small energy.

Remarks:

- Smallness is required for u_0 , not its potential ϕ_0 .
- The smallness and smoothness can be quantified.
- Theorem 2 is an obstruction to scattering in dimension 2, but there may exist dispersive solutions.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Main results:

Theorem (A.-Haspot 16)

If $g'(\rho_0) > 0$, $d \ge 3$, for small, smooth, and irrotational initial data the local strong solution is global. Moreover, the solution scatters, i.e. converges to a solution of the linearized system as $t \to \infty$.

Theorem (A. 17)

With the same assumptions, in dimension 2, there exists travelling waves of arbitrarily small energy.

Remarks:

- Smallness is required for u_0 , not its potential ϕ_0 .
- The smallness and smoothness can be quantified.
- Theorem 2 is an obstruction to scattering in dimension 2, but there may exist dispersive solutions.

∃ ► < ∃ ►</p>

Plan

æ

イロト イヨト イヨト イヨ

Sketch of proof of the second theorem

Based on variational methods, in the spirit of [Bethuel-Gravejat-Saut 08] for the Gross-Pitaevskii equation.

In the irrotational case $u = \nabla \phi$, a travelling wave is (up to symmetries) a solution of

$$-c\partial_1 \rho + \operatorname{div}(\rho \nabla \phi) = 0,$$

$$-c\partial_1 \phi + |\nabla \phi|^2 / 2 + g(\rho) = K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2$$
(TW)

< ロ > < 同 > < 回 > < 回 > < 回 > <

which can be recast as

$$\begin{split} \delta H &= c \delta P, \\ \text{where} \quad H(\rho, \phi) &= \int_{\mathbb{R}^d} \frac{K(\rho) |\nabla \rho|^2 + \rho |\nabla \phi|^2}{2} + G(\rho) dx, \\ P(\rho, \phi) &= \int_{\mathbb{R}^d} (\rho - 1) \partial_1 \phi. \end{split}$$

I.e. a solitary wave can be seen as a critical point of H - cP or a constrained minimizer of H with P constant.

We follow the constrained approach. Main issues:

- If the minimizer exists, its smoothness is not clear from the elliptic equation it satisfies,
- Even in the simple case $G(\rho) = (\rho 1)^2/2$, the functional $H(\rho, \phi) = \int_{\mathbb{R}^d} \frac{K(\rho) |\nabla \rho|^2 + \rho |\nabla \phi|^2}{2} + G(\rho) dx$ is not coercive (and not even defined) on $H^1 \times \dot{H}^1$,
- Even if there is coercivity, smoothness, the direct minimization approach on \mathbb{R}^2 is difficult due to the lack of compactness of minimizing sequences.

(日) (日) (日)

We follow the constrained approach. Main issues:

- If the minimizer exists, its smoothness is not clear from the elliptic equation it satisfies,
- Even in the simple case $G(\rho) = (\rho 1)^2/2$, the functional $H(\rho, \phi) = \int_{\mathbb{R}^d} \frac{K(\rho) |\nabla \rho|^2 + \rho |\nabla \phi|^2}{2} + G(\rho) dx$ is not coercive (and not even defined) on $H^1 \times \dot{H}^1$,
- Even if there is coercivity, smoothness, the direct minimization approach on ℝ² is difficult due to the lack of compactness of minimizing sequences.

We follow the constrained approach. Main issues:

- If the minimizer exists, its smoothness is not clear from the elliptic equation it satisfies,
- Even in the simple case $G(\rho) = (\rho 1)^2/2$, the functional $H(\rho, \phi) = \int_{\mathbb{R}^d} \frac{K(\rho) |\nabla \rho|^2 + \rho |\nabla \phi|^2}{2} + G(\rho) dx$ is not coercive (and not even defined) on $H^1 \times \dot{H}^1$,
- Even if there is coercivity, smoothness, the direct minimization approach on ℝ² is difficult due to the lack of compactness of minimizing sequences.

Scheme of proof

- New coercive functional \widetilde{H} with $\widetilde{H}(\rho, \phi) = H(\rho, \phi)$ if $\|\rho 1\| \ll 1$.
- Constrained minimization of \widetilde{H} on $\mathbb{R}^2/(2n\pi\mathbb{Z})^2$ instead of \mathbb{R}^2
- Smoothness of the minimizers (ρ_n, u_n), a priori estimates
- Concentration compactness argument on un

Minimization and smoothness for small data:

Existence of minimizers (on the torus) is easy. Smoothness can not be obtained directly:

$$u \in H^1, \Delta u = |\nabla u|^2 \Rightarrow \Delta u \in L^1 \Rightarrow u \in W^{2,1} \hookrightarrow H^1.$$

(and most likely not true: large traveling waves of GP have vortices)

For $||r||_{H^1} << 1$, model problem $\Delta r = |\nabla r|^2 + f$. Since $H^{1/2} \hookrightarrow L^4$ and interpolation $||\Delta r||_{L^2} \leq ||\nabla r||_{L^4}^2 + ||f||_{L^2} \lesssim ||\nabla r||_{L^2} ||\nabla^2 r||_{L^2} + ||f||_{L^2}$ $\Rightarrow ||\Delta r||_{L^2} \leq ||f||_{L^2} + ||r||_{H^1}.$

Then bootstrap \longrightarrow solutions of (TW) are C^{∞} , with

$$\|\rho - 1\|_{\infty} \ll 1 \Rightarrow \widetilde{H}(\rho, \phi) = H(\rho, \phi).$$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimization and smoothness for small data:

Existence of minimizers (on the torus) is easy. Smoothness can not be obtained directly:

$$u \in H^1, \Delta u = |\nabla u|^2 \Rightarrow \Delta u \in L^1 \Rightarrow u \in W^{2,1} \hookrightarrow H^1.$$

(and most likely not true: large traveling waves of GP have vortices)

For $||r||_{H^1} \ll 1$, model problem $\Delta r = |\nabla r|^2 + f$. Since $H^{1/2} \hookrightarrow L^4$ and interpolation

 $\begin{aligned} \|\Delta r\|_{L^2} &\leq \|\nabla r\|_{L^4}^2 + \|f\|_{L^2} \lesssim \|\nabla r\|_{L^2} \|\nabla^2 r\|_{L^2} + \|f\|_{L^2} \\ \Rightarrow \|\Delta r\|_{L^2} &\lesssim \|f\|_{L^2} + \|r\|_{H^1}. \end{aligned}$

Then bootstrap \longrightarrow solutions of (TW) are C^{∞} , with

$$\|\rho - 1\|_{\infty} \ll 1 \Rightarrow \widetilde{H}(\rho, \phi) = H(\rho, \phi).$$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A short glimpse of the concentration compactness argument:

- Set $H_{\min}(p) = \inf\{H(\rho, u) : P(\rho, u) = p\}$. Then H_{\min} is strictly subadditive.
- Let (ρ_n, u_n) be a constrained minimizer on the torus ℝ²/(2πnℤ)², embed the torus in ℝ².
- Assume dichotomy occurs, i.e. there exists two profiles $(\rho^1, u^1), (\rho^2, u^2)$ such that

$$H(\rho_n, u_n) \to H(\rho^1, u^1) + H(\rho^2, u^2), \ P(\rho_n, u_n) \to P(\rho^1, u^1) + P(\rho^2, u^2) := p_1 + p_2.$$

One can prove

im inf
$$H(\rho_n, u_n) \leq H_{\min}(\rho)$$
,

thus

$$H_{\min}(p_1) + H_{\min}(p_2) \le H(\rho^1, u^1) + H(\rho^2, u^2) \le H_{\min}(p)$$

- 4 同 ト 4 回 ト

This contradicts the subadditivity.

Main issue is "spreading", i.e.

$$u_n \to 0$$
 unif. on Ω and $||u_n||_{H^1(\Omega)} \not\rightarrow 0$.

This is forbidden by the key estimate

$$\|
ho-1\|_{L^{\infty}(K^{c})}<<1\Rightarrow\left|\int_{K^{c}}\widetilde{h}(
ho,\phi)-cp(
ho,\phi)dx
ight|<<\widetilde{h}(
ho,\phi).$$

to be understood as

"the energy spreads similarly to the momentum"

< 口 > < 同 >

B → < B

Some (very open) perspectives:

- solitary waves in higher dimensions, stability
- more precisions on their minimal energy,
- Global existence in dimension one,
- finite time blow up.

Thank you for your attention

æ