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Intro Main results Second theorem

Euler-Korteweg system: ∂tρ+ div(ρu) = 0,

∂t u + u · ∇u +∇g(ρ) = ∇
(

K (ρ)∆ρ+ 1
2 K ′(ρ)|∇ρ|2

)
,

(x , t) ∈ Rd × [0,T ].

(EK)
K (ρ): capillary coefficient, smooth, positive on R+∗. K can be unbounded near ρ = 0,

an important case is K = 1/ρ which corresponds to the so called quantum pressure.

g(ρ): related to the pressure by g′ = p′/ρ, stability assumption: g′(ρ0) > 0.

Gross-Pitaevskii equation

i∂tψ + ∆ψ = (|ψ|2 − 1)ψ

Aim: underline the similarities between these problems.
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In the case K (ρ) = 1/ρ, and for irrotational flows, there is a formal equivalence
between Euler-Korteweg and the nonlinear Schrödinger equation

i∂tψ + ∆ψ = g(|ψ|2)ψ,

through the Madelung transform

(ρ, u = ∇φ)→ ψ :=
√
ρeiφ/2.

For technical reasons, this case simplifies a lot the analysis of the system, we focus
here on the case of a general capillary coefficient.

Similarities appear both at the linear and nonlinear level.
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Background for the Gross-Pitaevskii equation

Conservation of energy
1
2

∫
Rd
|∇ψ|2 + ||ψ|2 − 1|2/2dx , momentum Im

∫
ψ∇ψdx .

Global well-posedness in the energy space [Béthuel-Saut 99, Gérard 06, Killip et
al 11].

If ψin = 1 + vin, vin small enough the solution scatters in dimension ≥ 3
[Gustafson-Nakanishi-Tsai 08], existence of dispersive solutions in dimension 2

Existence of travelling waves in any dimension [Béthuel et al 08, Maris 12] for
speeds smaller than the “sound speed”. Some travelling waves are constructed as
minimizers of the energy for a fixed momentum P =

∫
ψ∂1ψ. Travelling waves that

are not minimizers are known to exist too.

Orbital stability of travelling waves in some cases [Chiron-Maris 17].
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Background for the Euler-Korteweg system

Local well-posedness in Hs × (ρ0 + Hs+1), s > d/2 + 1, ρ0 ∈ R+∗, inf ρin > 0.
(+blow up criterion with a non vacuum condition on ρ) [BDD 06]

In the case of quantum hydrodynamics, in dimension 2 and 3 existence of global
weak solutions [Antonelli-Marcati 09].

In the case of quantum hydrodynamics with g(ρ) = ρ− ρ0 in dimension at least 3
and for small initial data, (EK ) has global strong solutions [A-Haspot 14].

Weak strong uniqueness [Giesselmann-Tzavaras]

In dimension 1, existence of traveling waves, stability condition à la
Grillakis-Shatah-Strauss. [Benzoni-Danchin-Descombes-Jamet 05]
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Two “hidden” structures

Nonlinear structure For u irrotational the system (EK) has an antisymetric structure

∂t

(
ρ

u

)
+

(
0 div
∇ 0

)(
δH/δρ
δH/δu

)
= 0. (1)

with H =

∫
R2

G(ρ) +
1
2

K (ρ)|∇ρ|2 +
1
2
ρ|u|2, G primitive of g.

In particular, there is the energy conservation

d
dt

HEK =
d
dt

∫
Rd

G(ρ) +
1
2

K (ρ)|∇ρ|2 +
1
2
ρ|u|2 = 0.

Similarity with the Gross-Pitaevskii energy ψ =
√
ρeiφ/2, i∂tψ + ∆ψ = (|ψ|2 − 1)ψ:

HGP :=
1
2

∫
Rd

(ρ− 1)2

2
+
|∇ρ|2

4ρ
+
ρ|u|2

4
dx

=
1
2

∫
Rd

(|ψ|2 − 1)2

2
+ |∇ψ|2dx
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Due to the invariance by translation of the equations, there is also conservation of the
“momentum”

P(ρ) =

∫
(ρ− ρ0)u dx ,

where ρ0 is a constant state such that lim
∞
ρ(x) = ρ0. The same is also true for

Gross-Pitaevskii
PGP(ρ, u) =

∫
Rd

(ρ− 1)u dx =

∫
Rd
ψ∇ψ dx .

This analogy paves the way to the existence of traveling waves by constrained
minimization.
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Linear structure
For simplicity, consider ρ = 1 + r , u = ∇φ, the linearized system reads{

∂t r + ∆φ = 0,
∂tφ− K (1)∆r + g′(1)r = 0.

Equivalently, setting r̃ =
√

K (1)r , a =
√

K (1), z = r̃ + iφ{
∂t r̃ + a∆φ = 0,

∂tφ− a∆r̃ + g′(1)
√

1
K (1)

r̃ = 0,

⇔ i∂t z + a∆z = g′(1)

√
1

K (1)
Re(z). (LEK )

If g′(1) > 0 this is (almost) the linearization of the Gross-Pitaevskii equation
i∂tψ + ∆ψ = (|ψ|2 − 1)ψ near ψ = 1 :

i∂t z + ∆z = 2Re(z). (LGP)
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Main results:

Theorem (A.-Haspot 16)

If g′(ρ0) > 0, d ≥ 3, for small, smooth, and irrotational initial data the local strong
solution is global. Moreover, the solution scatters, i.e. converges to a solution of the
linearized system as t →∞.

Theorem (A. 17)

With the same assumptions, in dimension 2, there exists travelling waves of arbitrarily
small energy.

Remarks:

Smallness is required for u0, not its potential φ0.

The smallness and smoothness can be quantified.

Theorem 2 is an obstruction to scattering in dimension 2, but there may exist
dispersive solutions.
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Sketch of proof of the second theorem
Based on variational methods, in the spirit of [Bethuel-Gravejat-Saut 08] for the
Gross-Pitaevskii equation.
In the irrotational case u = ∇φ, a travelling wave is (up to symmetries) a solution of −c∂1ρ+ div(ρ∇φ) = 0,

−c∂1φ+ |∇φ|2/2 + g(ρ) = K (ρ)∆ρ+ 1
2 K ′(ρ)|∇ρ|2

(TW)

which can be recast as

δH = cδP,

where H(ρ, φ) =

∫
Rd

K (ρ)|∇ρ|2 + ρ|∇φ|2

2
+ G(ρ)dx ,

P(ρ, φ) =

∫
Rd

(ρ− 1)∂1φ.

I.e. a solitary wave can be seen as a critical point of H − cP or a constrained minimizer
of H with P constant.
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We follow the constrained approach. Main issues:

If the minimizer exists, its smoothness is not clear from the elliptic equation it
satisfies,

Even in the simple case G(ρ) = (ρ− 1)2/2, the functional

H(ρ, φ) =

∫
Rd

K (ρ)|∇ρ|2 + ρ|∇φ|2

2
+ G(ρ)dx is not coercive (and not even

defined) on H1 × Ḣ1,

Even if there is coercivity, smoothness, the direct minimization approach on R2 is
difficult due to the lack of compactness of minimizing sequences.
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Scheme of proof

New coercive functional H̃ with H̃(ρ, φ) = H(ρ, φ) if ‖ρ− 1‖ << 1.

Constrained minimization of H̃ on R2/(2nπZ)2 instead of R2

Smoothness of the minimizers (ρn, un), a priori estimates

Concentration compactness argument on un
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Minimization and smoothness for small data:
Existence of minimizers (on the torus) is easy. Smoothness can not be obtained
directly:

u ∈ H1,∆u = |∇u|2 ⇒ ∆u ∈ L1 ⇒ u ∈ W 2,1 ↪→ H1.

(and most likely not true: large traveling waves of GP have vortices)

For ‖r‖H1 << 1, model problem ∆r = |∇r |2 + f . Since H1/2 ↪→ L4 and interpolation

‖∆r‖L2 ≤ ‖∇r‖2
L4 + ‖f‖L2 . ‖∇r‖L2‖∇2r‖L2 + ‖f‖L2

⇒ ‖∆r‖L2 . ‖f‖L2 + ‖r‖H1 .

Then bootstrap −→ solutions of (TW) are C∞, with

‖ρ− 1‖∞ << 1⇒ H̃(ρ, φ) = H(ρ, φ).
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A short glimpse of the concentration compactness argument:

Set Hmin(p) = inf{H(ρ, u) : P(ρ, u) = p}. Then Hmin is strictly subadditive.

Let (ρn, un) be a constrained minimizer on the torus R2/(2πnZ)2, embed the torus
in R2.

Assume dichotomy occurs, i.e. there exists two profiles (ρ1, u1), (ρ2, u2) such that

H(ρn, un)→ H(ρ1, u1)+H(ρ2, u2), P(ρn, un)→ P(ρ1, u1)+P(ρ2, u2) := p1 +p2.

One can prove
lim inf H(ρn, un) ≤ Hmin(p),

thus
Hmin(p1) + Hmin(p2) ≤ H(ρ1, u1) + H(ρ2, u2) ≤ Hmin(p)

This contradicts the subadditivity.
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Main issue is “spreading”, i.e.

un → 0 unif. on Ω and ‖un‖H1(Ω) 9 0.

This is forbidden by the key estimate

‖ρ− 1‖L∞(K c ) << 1⇒
∣∣∣∣ ∫

K c
h̃(ρ, φ)− cp(ρ, φ)dx

∣∣∣∣ << h̃(ρ, φ).

to be understood as

“the energy spreads similarly to the momentum”
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Some (very open) perspectives:

solitary waves in higher dimensions, stability

more precisions on their minimal energy,

Global existence in dimension one,

finite time blow up.
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Thank you for your attention
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