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Motivation : Understand construction and qualitative properties of
compact finite difference schemes of high order for elliptic problems .

Problem : It is too general ! So we focus on an elementary problem:
homogeneous Dirichlet problem in dimension 1.
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Motivation : Understand construction and qualitative properties of
compact finite difference schemes of high order for elliptic problems .

Problem : It is too general ! So we focus on an elementary problem:
homogeneous Dirichlet problem in dimension 1.

For a given f : R — C, find v : [0,1] — C such that

{ —u"(x) = f(x), Vx €]0,1],
u(0) = u(1) = 0.
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Compact finite difference scheme ?
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|
I

|

| | 1
I I ‘

Figure: Regular grid with N points into ]0, 1].

A compact finite difference scheme is a linear system

DNUN — h2SNfN,ex

where
o £ = (F(x)yez.
o uVN ~ (u(xjN))jzlmN is an approximation of the solution of the

Dirichlet problem,

o Dy and Sy are matrices.



Examples:

and (small abuse of notations)

1

Sn e .z(ch).
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Expectations: convergence of u

In general, we expect there exists n € N*, the order of the scheme , and
C > 0 such that
ul — u(x")| < Ch", YN,V
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Expectations: convergence of u

In general, we expect there exists n € N*, the order of the scheme , and
C > 0 such that
luf — u(x")| < Ch", VN, V.
Questions:
@ In general, are these schemes convergent 7

@ Are some of them more efficient than others 7
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@ Consistency + Stability = Convergence

© Construction of the schemes

e Optimality

@ Resonances
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@ Consistency + Stability = Convergence
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Consistency: (order n) Vf € C*(R),3c > 0,VN € N*,

HDNUN,ex o hzstN’eXHoo < Chn+2.
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Consistency: (order n) Vf € C*(R),3c > 0,VN € N*,
HDNUN,ex o hzstN’eXHoo < Chn+2.

Weak Consistency: (order n) 3/ € N.Yf € C*(R),3c > 0,VYN € N*,

’(DNUN,eX)j — 1 (st

j ch” else.

<{ ch™? ifl<j<N+1-1,
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A scheme (D, Sy)n (or a sequence of matrix (Dy)py) is

@ stable, if there exists a positive constant ¢ > 0 such that for all
N € N*, we have

W e CV c|vlloo < h2||Dav|lso.
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A scheme (D, Sy)n (or a sequence of matrix (Dy)py) is

@ stable, if there exists a positive constant ¢ > 0 such that for all
N € N*, we have

W e CV c|vlloo < h2||Dav|lso.

@ strongly stable, if for all / € N, there exists a positive constant ¢ > 0
such that for all N € N*,

e CN ¢||v]s < _sup

{ h2(Dpv); ifl<j<N+1-1,
j=1,..,N

(Dwv); else.
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A scheme (D, Sy)n (or a sequence of matrix (Dy)py) is

@ stable, if there exists a positive constant ¢ > 0 such that for all
N € N*, we have

W e CV c|vlloo < h2||Dav|lso.

@ strongly stable, if for all / € N, there exists a positive constant ¢ > 0
such that for all N € N*,

e CN ¢||v]s < _sup

{ h2(Dpv); ifl<j<N+1-1,
j=1,..,N

(Dwv); else.

o stable relatively to a sequence (ny)nen+ of positive numbers, if there
exists a positive constant ¢ > 0 such that for all N € N*, we have

Y e CY, c|v]so < nnlIDaV|lso-
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@ A scheme that is strongly stable and weakly consistent of order n is
convergent of order n.

o If nyh"? = o0 O then a scheme that is stable relatively to the
sequence (ny)nen+ and consistent of order n is convergent at the rate
N = 77Nhn+2-

DNV = DN (UN’eX — UN) = DNUN’eX — hzstN’ex.
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© Construction of the schemes
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A couple of finite difference formulas (d,s) € (C(Z))2 is consistent of
order n, if

Yue CP(R), Y diu(x)") + MPsiu"(x') = O(h"*?).
JjeZ

Example: d= 21{0} - 1{7171} = ”(—1, 2, —1)” and s = 1{0} = ”(1)”.
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A couple of finite difference formulas (d,s) € (C(Z))2 is consistent of
order n, if

Yue CP(R), Y diu(x)") + MPsiu"(x') = O(h"*?).
JjeZ

Example: d= 21{0} - 1{7171} = ”(—1, 2, —1)” and s = 1{0} = ”(1)”.
Remark : We only consider symmetric finite difference formulas
VjeZ, dj = d_j and Sj = S_j.

Choosing u =1 we get

> di=o.

Jjez
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It is easy to get such couples. For example, choose any d € C(2)
symmetric and satisfying
S 4=

jez

then we can get s € C(? such that (d, s) is consistent of order n solving

the linear system

.2 n
S0 . 2j-2 _ (J J
(Sosteesea ) (= 1) hcijer = -4 (2’ 7 n(n — 1)) '

j>0
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To design matrices Dy and Sy from the formulas d and s, a natural choice
would be the following:

(Dpyu); Zd—lul and (Syf); ZS’—J

J€Z JjeZ
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To design matrices Dy and Sy from the formulas d and s, a natural choice
would be the following:

(DNU Zd_JuJ and SNf ZS,_J -

J€Z JjeZ

Problem: it does not make sense on the boundary !

If we define the size of the stencil of d as
r(d) = max{j € Z | d; # 0},

then the previous formula involves terms like uy_;(gy.
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Solution: To introduce formulas (d’, s’) consistent of order n (or n — 2)
at a distance i of the boundary.

(Dwu); =

(Swf); ==

Joackim Bernier

> diu; if1<i<7(d),
Jj>0
> disju; if 7(d) <i< N+1—7(d),
JeZ _
> dVi T N+ 1-7(d) i< N+
\ J<N+1
(> s if1<i<7(d),
JjEZ

> siif if 7(d) <i< N+1—7(d),
JjEZ

D SN N1 7(d) <P <N

JjeZ

Construction of the schemes

17 / 41



(d',s') is consistent of order ;x € {n, n — 2} at a distance i of the boundary
if

Yu S COO(R) =0 = Z dl + h2zsl " O(hu+2)7
J>—i JjeZ
(1)
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(d',s') is consistent of order ;x € {n, n — 2} at a distance i of the boundary
if

Vue CP(R), u(0)=0 = > dlu(x)+hm> siu"(x};) = 0(h"?),

(1)

J>—i jez

This scheme is consistent of order n (weakly if (d’,s’) consistent of order
n—2).

Joackim Bernier Construction of the schemes 18 / 41



(d',s") is consistent of order 1 € {n,n — 2} at a distance i of the boundary
if

Yue CP(R), u(0) =0 = > dlu(x\,)+hr> siu"(x},) = 0(n"?),
Jj>—i Jjez
(1)

This scheme is consistent of order n (weakly if (d’,s’) consistent of order
n—2).

Question : How to choose (d',s')?

This choice is crucial to hope stability. For example, we could choose
d' = s' = 0 but the scheme would not be stable !

There are methods based on monotonicity (i.e. (Dy');; > 0) but these
methods are not very general and it is not clear if arbitrarily high order
schemes may be designed.
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Our choice: We keep the relation

(Dyu); =Y dijuj, Vj=1,...,N,
JjeZ

extending u as an odd sequence in 0 and N + 1.
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Our choice: We keep the relation

(Dpu); Zd—JuJ’ Vj=
JjeZ

extending u as an odd sequence in 0 and N + 1.
With the previous formalism we get

df = d—dyyrj, i=1....7(d). jeZ
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Our choice: We keep the relation

(Dyu); =Y dijuj, Vj=1,...,N,
JjeZ

extending u as an odd sequence in 0 and N + 1.
With the previous formalism we get

df = d—dyyrj, i=1....7(d). jeZ

There exists s’ such that (d’,s’) is consistent of order u € {n,n — 2} at
a distance i of the boundary.

Joackim Bernier Construction of the schemes 19 / 41



Sketch of proof: Let u € C*°(R) such that u(0) =0

Z dl I+J Zd ux J-H Z dju(x J-‘rl Z dj2iu(

J>—i J€Z J<—i J>—i

=3 su" (<L) Zd,+J< +uf ﬁ'j)) + O(h2).

JeZ Jj>0

J+'

However, we have

o) + ) = )+ u(x) — 20(0) =~ S Bju (") + O(12)

lez

where b/ is obtained solving the linear system

. . o
(3751, ce bjg,l)((" - 1)21_2)19',13% = — (J J) .
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Question : Why such a choice on the boundary ?

Joackim Bernier Construction of the schemes 21 /41



Question : Why such a choice on the boundary ?

We have constructed
8%, c — M N (C)
d —  Dp(d)

with .7¢ the space of symmetric complex valued formulas.
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Question : Why such a choice on the boundary ?

We have constructed
,5”0 — /VIN(C)

d — Dpy(d)

with .7¢ the space of symmetric complex valued formulas. If we
equip ¢ of its structure of algebra for the convolution , it is a
morphism of algebra !
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Question : Why such a choice on the boundary ?

We have constructed
,5”0 — MN(C)

d — Dpy(d)

with .7¢ the space of symmetric complex valued formulas. If we
equip ¢ of its structure of algebra for the convolution , it is a
morphism of algebra !

However, if a = 2179y — 1;_1 13 ="(=1,2,-1)" then

CIX] — A . . .
X] € isan isomorphism of algebra.
P —  P(a)
Joackim Bernier Construction of the schemes
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Question : Why such a choice on the boundary ?

We have constructed
,5”0 — MN(C)

d — Dpy(d)

with .7¢ the space of symmetric complex valued formulas. If we
equip ¢ of its structure of algebra for the convolution , it is a
morphism of algebra !

However, if a = 2179y — 1;_1 13 ="(=1,2,-1)" then

CIX] — S
P —  P(a)

is an isomorphism of algebra.

Conclusion: if d = P(a) then

Dn(d) = Dn(P(a)) = P(Dn(a)) =: P(An).

Joackim Bernier Construction of the schemes
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Ay is the square matrix defined by

It is a well known matrix whose spectral decomposition is given by

Ayel = 4sin2 (gkh) el with el := (sin(mkhj))j—1...n.

)
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Ay is the square matrix defined by

It is a well known matrix whose spectral decomposition is given by

Ayel = 4sin2 (gkh) el with el := (sin(mkhj))j—1...n.

)

Conclusion: To get convergence, we just have to study stability of
matrices of the type P(Ap) !
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e Optimality
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If I =7(d) — 1 and m = 7(s) the matrices we have constructed are

do ... dia
d2 ... du

d . dp.
Dn(d) = +1 _ 1+1
w(d) dia

dj+1 :
digx .. da
dys ... do

s

. . . +
- - - Bl
Sy = + ON—_pt2, N—pt2 .
- - - B,

Sm so Sm

To get efficient schemes, we want to minimise / and m but to conserve

the consistency order.

Joackim Bernier Optimality
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We can look for symmetric formulas d, s as polynomial of a
d = P(a) and s = Q(a).

Considering formulas of consistency order larger than or equal 2, necessarily
we have P(0) = 0. Consequently, it can be factorized

P =XR.
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We can look for symmetric formulas d, s as polynomial of a
d = P(a) and s = Q(a).

Considering formulas of consistency order larger than or equal 2, necessarily
we have P(0) = 0. Consequently, it can be factorized

P = XR.
We remark that
7(d) =1+ deg R and 7(s) = deg Q.
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We can look for symmetric formulas d, s as polynomial of a
d = P(a) and s = Q(a).

Considering formulas of consistency order larger than or equal 2, necessarily
we have P(0) = 0. Consequently, it can be factorized

P = XR.
We remark that
7(d) =14 deg R and 7(s) = deg Q.

(d,s) is consistent of order n = 2k if and only if
R(X) = C(X)Q(X) mod Xk,

where

in(¥X)\ > n
C(X) :=4(&(TX)) P Pp—

—
X i (n+ LPCTE
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Looking for a solution of R(X) = C(X)Q(X) mod Xk with deg R </ and
deg @ < m we get a linear system with

@ k equations,

@ /| + m + 2 unknowns.
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Looking for a solution of R(X) = C(X)Q(X) mod Xk with deg R </ and
deg @ < m we get a linear system with

@ k equations,
@ /| + m + 2 unknowns.

So, if | + m+ 1 > k there is at least one non trivial solution.

Joackim Bernier Optimality 26 / 41



Looking for a solution of R(X) = C(X)Q(X) mod Xk with deg R </ and
deg @ < m we get a linear system with

@ k equations,
@ /| + m + 2 unknowns.

So, if | + m+ 1 > k there is at least one non trivial solution.

For any fixed, /, m, k such that / + m + 1 = k, this solution is unique up to
multiplication by a constant.

We denote it Ry m and Qm (choosing Ry m(0) = 1).
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Sketch of proof: It is a classical problem of Padé approximant.
Indeed, we are looking for a rational approximation g of Cin X =0.

Following classical theory, this result is a corollary of the fact that
C(—4X) is a Stieltjes transform of a positive function p : (0,1) — R,

C(—4X):/O 1‘1555))( ds.
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]-Salg"'SOQh
0<p1 < < B
k

k
Vke[lql, Y o< B
j=1 j=1

If

then q+1Fq[1ﬁlf’ ,/i, X] is a Stieltjes transform of a positive function

p:(0,1) = R.

ot 0p g (00 (ap) XX
qu[ﬁlv---,Bq X] keZN(ﬁ)l...(ﬁq)k a k—H’W‘

Joackim Bernier Optimality 28 / 41



]-Salg"'SOQh
0<p1 < < B
k

k
Vke[lql, Y o< B
j=1 j=1

If

then q+1Fq[1ﬁlf’ ,/i, X] is a Stieltjes transform of a positive function

p:(0,1) = R.

A1y .., Q a)i ... (ap)e XX
qu[ 1 Px] -_Zwimth k—H’Y‘F,I‘

by T 2 B (G K
1,1,1 X
cx) =5k 5]
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Corollary: Zero points of R, are localised in (4, c0).

Let P € C[X] be a polynomial such that

P(0) =0, P'(0) # 0 and Vx €]0,4], P(x) # 0.

Then the sequence of matrices (P(Ay))nyen+ is strongly stable.

Application: P = XR) .

Joackim Bernier Optimality
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Corollary: Zero points of R, are localised in (4, c0).

Let P € C[X] be a polynomial such that
P(0) =0, P'(0) # 0 and Vx €]0,4], P(x) # 0.

Then the sequence of matrices (P(Ay))nyen+ is strongly stable.

Application: P = XR) .

Conclusion: If we want a scheme of order n = 2k with / = 7(d) + 1 and
m = 7(m) as small as possible, we have to choose | + m+ 1 = k. In this
case there exists an unique normalized scheme given by d = (XR )(a)
and s = Q) m(a). Furthermore, this scheme is strongly stable and so
convergent of order n.
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*  1=0m=4
* O =1 m=3
+ | =
ok =2 m=2
* ¢ I=3m=t
*
* =4 m=0
- -10log(N)+42
12 9 * * o)+
. *
° *
14r ? * b
2‘ . *
w o *
B v * .
16 F B
? * .
*
o
¥ %
Erys R % |
o
Q
Q? . *
20 o |
F B
]
+
2 . . . . .
5.2 5.4 56 5.8 6 6.2 6.4

log(N)
Figure: Convergence curves, with u(x) = x(1 — x)e*“*5(41¥) and
Ep = [juN —uM®| ., N € {200,235,271,300, 341,372,401, 447,500}, for the

optimal schemes, with n =10, u =8, d = d"™ and s = s"'™.
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Sketch of proof: This property is well known for Ay, so we just have
to prove that if R does not vanish on [0, 4] then

sup ||[R(AN) oo < o0.
NeN*
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Sketch of proof: This property is well known for Ay, so we just have
to prove that if R does not vanish on [0, 4] then

sup ||[R(AN) oo < o0.
NeN*
Consider the Fourier transform of R~1(45sin?($))

R~1(4sin?( Z ancos(nf), (an) € 11
neN
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Sketch of proof: This property is well known for Ay, so we just have
to prove that if R does not vanish on [0, 4] then

sup ||[R(AN) oo < o0.
NeN*

Consider the Fourier transform of R~1(45sin?($))
R~1(4sin?( Z ancos(nf), (an) € 11
neN
Then observe that

1,_
DN( { nvn}

2

eV = cos(nmkh)el
k k
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Sketch of proof: This property is well known for Ay, so we just have
to prove that if R does not vanish on [0, 4] then

sup ||[R(AN) oo < o0.
NeN*

Consider the Fourier transform of R~1(45sin?($))
R~1(4sin?( Z ancos(nf), (an) € 11
neN

Then observe that
1,
DN(%)eL\’ = cos(nmkh)el

Consequently, we have
—n,n}
) )'

1
R(AN)_l — Z anDN({T
neN

However, we have obviously ||Dy(—5=" { m") || = 1, 50 we get

IR(AN) " [loe S 1(@n)l[er-

Joackim Bernier Optimality
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@ Resonances
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Consider a scheme where Dy(d) = P(Ap). If we don't take care in the
construction of d, P could vanish into (0, 4).

However, we have

Spc Dn(d) = {P<4sin2 (”2“’)) | k = 1,...,N}.

So Dy/(d) could have very small eigenvalues. (stability ~ control of
h*|DRM)
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Consider a scheme where Dy(d) = P(Ap). If we don't take care in the
construction of d, P could vanish into (0, 4).

However, we have

Spc Dn(d) = {P<4sin2 (”2“’)) | k = 1,...,N}.

So Dy/(d) could have very small eigenvalues. (stability ~ control of
-1
(1D 1)
Questions:
@ In general, does P really have zero points into (0,4)?

@ Are small eigenvalues of Dy(d) large enough to allow stability ?
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For almost all symmetric C valued formula d such that

Sd=0

jez

P does not vanish in ]0,4], P(0) = 0 and P’(0) # 0.

v,

Corollary: Almost all complex valued scheme (consistent of order larger

than or equal to 2) is strongly stable !

Joackim Bernier Resonances
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For almost all symmetric C valued formula d such that

Sd=0

jez

P does not vanish in ]0,4], P(0) = 0 and P’(0) # 0.

v,

Corollary: Almost all complex valued scheme (consistent of order larger
than or equal to 2) is strongly stable !

Problem: In practice, we consider real valued formulas. And for any
/>0,
Int{R € R/[X] | 3x0 € (0,4), R(xp) =0} # 0.

It can not be a null set.
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A numerical experiment:

Fix I > 1 and n € 2N*,

Choose randomly a formula d of sum 0 such that 7(d) < /+1,
Determine s to get a couple (d, s) consistent of order n,
Assemble the matrices Dy(d) and Sy,

Choose a test function u € C*>(R) such that u(0) = u(1) =0 and
define f = —u”,

@ Plot the convergence curves.
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1] T
+ +  quasi-resonant

% non-resonant

log(10 NA{-2}) i

log(E_N)
&
T

Figure: Convergence curves with u(x) = x(1 — x)e?* , n=2 and

En := [JuM — uM-*| . For the non-resonant scheme d = 210} — 1{_1,1; and for
the quasi-resonant scheme d = (2 — 62)10y + (4z — 1)1;_11); — z1{_22} with
z = 0.358946420670826.
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log(E_N)
&
T

+  quasi-resonant
% non-resonant

log(10 N~{-4})

*

* 4
*
*
*
Fky
Fb

Fhe

-25
35

Figure: Convergence curves with u(x) = x(1 — x)e

log(N)

2x

,n=4and

En := [JuM — uM-*| . For the non-resonant scheme d = 210} — 1{_1,1; and for
the quasi-resonant scheme d = (2 — 62)10y + (4z — 1)1;_11); — z1{_22} with

= 32.12121212.
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Observations:
@ Two kinds of behaviours.
@ Resonant case <= P vanishes into |0, 4]

@ In the resonant case the scheme seems convergent with the good
rate.
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Let P € C[X] be a polynomial and let A be the set of the roots of P in [0, 4]
and assume that P satisfies the following assumptions:

i) 0 €A,

i) 4¢A,
iii) the roots of P in [0, 4] are simple,
iv) 36 : N* = R%,

VAEANVgeN VI<p<qg-1, 0<6q§‘)\—4sin2 <72”;)’

Then the sequence of finite difference matrices (P(Apn))nen+ is stable rela-
tively to the sequence ny = ﬁ

Remark: If §y41 = h? then P(Ay) is stable.
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Let (4)q be a sequence of positive real numbers such that the series ) v,
converges. Then, for almost all & € R, there exists a constant ¢ > 0 such
that for all p, g € Z x N*, one has

Yq
-

a—21>¢
q
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Let (vq)q be a sequence of positive real numbers such that the series  vq
converges. Then, for almost all « € R, there exists a constant ¢ > 0 such
that for all p, g € Z x N*, one has
v
lae — B[ > e
q q

i dg = %" and qug is bounded then for all / > 1 and almost all P € XR;[X],
if \'is the set of the roots of P into [0, 4] then there exists C > 0 s.t.

i) 0 €A,
i) 4¢ A,
iii) the roots of P in [0, 4] are simple,
iv) 30 : N* - R%,
Vq

VAEAVYGEN VIS p< g1, 0<q§C‘)\—4sin2 <72”;>‘

Joackim Bernier Resonances 40 / 41



1

In practice we can choose vy = ———.
qlogq

Conclusion: Almost all real valued consistent scheme of order n > 2 is
convergent at the rate h" log?(h).
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1

In practice we can choose vy = ———.
qlogq

Conclusion: Almost all real valued consistent scheme of order n > 2 is
convergent at the rate h" log?(h).

Thank you for your attention
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