Optimality and resonances in a class of compact finite difference schemes of high order

Joackim Bernier
IRMAR (Rennes)
January 31, 2018

Motivation : Understand construction and qualitative properties of compact finite difference schemes of high order for elliptic problems.

Problem : It is too general! So we focus on an elementary problem: homogeneous Dirichlet problem in dimension 1.

Motivation : Understand construction and qualitative properties of compact finite difference schemes of high order for elliptic problems.

Problem : It is too general! So we focus on an elementary problem: homogeneous Dirichlet problem in dimension 1.

For a given $f: \mathbb{R} \rightarrow \mathbb{C}$, find $u:[0,1] \rightarrow \mathbb{C}$ such that

$$
\left\{\begin{array}{l}
\left.-u^{\prime \prime}(x)=f(x), \forall x \in\right] 0,1[, \\
u(0)=u(1)=0 .
\end{array}\right.
$$

Compact finite difference scheme ?

Figure: Regular grid with N points into $] 0,1[$.

A compact finite difference scheme is a linear system

$$
\mathbf{D}_{N} \mathbf{u}^{N}=h^{2} \mathbf{S}_{N} \mathbf{f}^{N, e x}
$$

where

- $\mathbf{f}^{N, e x}=\left(f\left(x_{j}^{N}\right)\right)_{j \in \mathbb{Z}}$,
- $\mathbf{u}^{N} \simeq\left(u\left(x_{j}^{N}\right)\right)_{j=1 \ldots N}$ is an approximation of the solution of the Dirichlet problem,
- \mathbf{D}_{N} and \mathbf{S}_{N} are matrices.

Examples:

$$
\mathbf{D}_{N}=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathscr{L}\left(\mathbb{C}^{N}\right)
$$

and (small abuse of notations)

$$
\mathrm{S}_{N}=\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 1 & \\
& & & & 1
\end{array}\right) \in \mathscr{L}\left(\mathbb{C}^{N}\right)
$$

$$
\mathbf{D}_{N}=\frac{1}{12}\left(\begin{array}{ccccccc}
29 & -16 & 1 & & & & \\
-16 & 30 & -16 & 1 & & & \\
1 & -16 & 30 & -16 & 1 & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & 1 & -16 & 30 & -16 & 1 \\
& & & 1 & -16 & 30 & -16 \\
& & & & 1 & -16 & 29
\end{array}\right)
$$

and

$$
\mathrm{S}_{N}=\left(\begin{array}{cccccccc}
\frac{1}{12} & 1 & & & & & & \\
& & 1 & & & & & \\
& & & 1 & & & & \\
\\
& & & & \ddots & & & \\
& & & & & 1 & & \\
& & & & & & 1 & \\
& & & & & & & 1
\end{array}\right)
$$

$$
\mathbf{D}_{N}=\frac{1}{20}\left(\begin{array}{cccccccc}
40 & -20 & & & & & & \\
-16 & 34 & -16 & -1 & & & & \\
-1 & -16 & 34 & -16 & -1 & & & \\
& -1 & -16 & 34 & -16 & -1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & & -1 & -16 & 34 & -16 & -1 \\
& & & & -1 & -16 & 34 & -16 \\
& & & & & & -20 & 40
\end{array}\right)
$$

and

$$
\mathrm{S}_{N}=\frac{1}{60}\left(\begin{array}{cccccccc}
5 & 50 & 5 & & & & & \\
& 8 & 44 & 8 & & & & \\
& & 8 & 44 & 8 & & & \\
& & & \ddots & \ddots & \ddots & & \\
& & & & 8 & 44 & 8 & \\
& & & & & 5 & 50 & 5
\end{array}\right)
$$

Expectations: convergence of u^{N}

$$
\lim _{N \rightarrow \infty} \sup _{j=1, \ldots, N}\left|u_{j}^{N}-u\left(x_{j}^{N}\right)\right|=0
$$

In general, we expect there exists $n \in \mathbb{N}^{*}$, the order of the scheme, and $C>0$ such that

$$
\left|u_{j}^{N}-u\left(x_{j}^{N}\right)\right| \leq C h^{n}, \forall N, \forall j .
$$

Expectations: convergence of u^{N}

$$
\lim _{N \rightarrow \infty} \sup _{j=1, \ldots, N}\left|u_{j}^{N}-u\left(x_{j}^{N}\right)\right|=0 .
$$

In general, we expect there exists $n \in \mathbb{N}^{*}$, the order of the scheme, and $C>0$ such that

$$
\left|u_{j}^{N}-u\left(x_{j}^{N}\right)\right| \leq C h^{n}, \forall N, \forall j .
$$

Questions:

- In general, are these schemes convergent ?
- Are some of them more efficient than others ?
(1) Consistency + Stability \Rightarrow Convergence
(2) Construction of the schemes
(3) Optimality
(4) Resonances

(1) Consistency + Stability \Rightarrow Convergence

(2) Construction of the schemes

Consistency: (order n) $\forall f \in C^{\infty}(\mathbb{R}), \exists c>0, \forall N \in \mathbb{N}^{*}$,

$$
\left\|\mathbf{D}_{N} \mathbf{u}^{N, e x}-h^{2} \mathbf{S}_{N} \mathbf{f}^{N, e x}\right\|_{\infty} \leq c h^{n+2}
$$

Consistency: (order n) $\forall f \in C^{\infty}(\mathbb{R}), \exists c>0, \forall N \in \mathbb{N}^{*}$,

$$
\left\|\mathbf{D}_{N} \mathbf{u}^{N, e x}-h^{2} \mathbf{S}_{N} \mathbf{f}^{N, e x}\right\|_{\infty} \leq c h^{n+2}
$$

Weak Consistency: (order n) $\exists l \in \mathbb{N}, \forall f \in C^{\infty}(\mathbb{R}), \exists c>0, \forall N \in \mathbb{N}^{*}$,

$$
\left|\left(\mathbf{D}_{N} \mathbf{u}^{N, e x}\right)_{j}-h^{2}\left(\mathbf{S}_{N} \mathbf{f}^{N, e x}\right)_{j}\right| \leq \begin{cases}c h^{n+2} & \text { if } I<j<N+1-I \\ c h^{n} & \text { else. }\end{cases}
$$

A scheme $\left(\mathbf{D}_{N}, \mathbf{S}_{N}\right)_{N}$ (or a sequence of matrix $\left.\left(\mathbf{D}_{N}\right)_{N}\right)$ is

- stable, if there exists a positive constant $c>0$ such that for all $N \in \mathbb{N}^{*}$, we have

$$
\forall \mathbf{v} \in \mathbb{C}^{N}, c\|\mathbf{v}\|_{\infty} \leq h^{-2}\left\|\mathbf{D}_{N} \mathbf{v}\right\|_{\infty}
$$

A scheme $\left(\mathbf{D}_{N}, \mathbf{S}_{N}\right)_{N}\left(\right.$ or a sequence of matrix $\left.\left(\mathbf{D}_{N}\right)_{N}\right)$ is

- stable, if there exists a positive constant $c>0$ such that for all $N \in \mathbb{N}^{*}$, we have

$$
\forall \mathbf{v} \in \mathbb{C}^{N}, c\|\mathbf{v}\|_{\infty} \leq h^{-2}\left\|\mathbf{D}_{N} \mathbf{v}\right\|_{\infty}
$$

- strongly stable, if for all $I \in \mathbb{N}$, there exists a positive constant $c>0$ such that for all $N \in \mathbb{N}^{*}$,

$$
\forall \mathbf{v} \in \mathbb{C}^{N}, c\|\mathbf{v}\|_{\infty} \leq \sup _{j=1, \ldots, N} \begin{cases}h^{-2}\left(\mathbf{D}_{N} \mathbf{v}\right)_{j} & \text { if } l<j<N+1-l \\ \left(\mathbf{D}_{N} \mathbf{v}\right)_{j} & \text { else }\end{cases}
$$

A scheme $\left(\mathbf{D}_{N}, \mathbf{S}_{N}\right)_{N}$ (or a sequence of matrix $\left.\left(\mathbf{D}_{N}\right)_{N}\right)$ is

- stable, if there exists a positive constant $c>0$ such that for all $N \in \mathbb{N}^{*}$, we have

$$
\forall \mathbf{v} \in \mathbb{C}^{N}, c\|\mathbf{v}\|_{\infty} \leq h^{-2}\left\|\mathbf{D}_{N} \mathbf{v}\right\|_{\infty}
$$

- strongly stable, if for all $I \in \mathbb{N}$, there exists a positive constant $c>0$ such that for all $N \in \mathbb{N}^{*}$,

$$
\forall \mathbf{v} \in \mathbb{C}^{N}, c\|\mathbf{v}\|_{\infty} \leq \sup _{j=1, \ldots, N} \begin{cases}h^{-2}\left(\mathbf{D}_{N} \mathbf{v}\right)_{j} & \text { if } l<j<N+1-l \\ \left(\mathbf{D}_{N} \mathbf{v}\right)_{j} & \text { else }\end{cases}
$$

- stable relatively to a sequence $\left(\eta_{N}\right)_{N \in \mathbb{N}^{*}}$ of positive numbers, if there exists a positive constant $c>0$ such that for all $N \in \mathbb{N}^{*}$, we have

$$
\forall \mathbf{v} \in \mathbb{C}^{N}, c\|\mathbf{v}\|_{\infty} \leq \eta_{N}\left\|\mathbf{D}_{N} \mathbf{v}\right\|_{\infty}
$$

Theorem: Lax

- A scheme that is strongly stable and weakly consistent of order n is convergent of order n.
- If $\eta_{N} h^{n+2} \rightarrow_{N \rightarrow \infty} 0$ then a scheme that is stable relatively to the sequence $\left(\eta_{N}\right)_{N \in \mathbb{N}^{*}}$ and consistent of order n is convergent at the rate $\epsilon_{N}=\eta_{N} h^{n+2}$.

Proof.

$$
\mathbf{D}_{N} \mathbf{v}=\mathbf{D}_{N}\left(\mathbf{u}^{N, e x}-\mathbf{u}^{N}\right)=\mathbf{D}_{N} \mathbf{u}^{N, e x}-h^{2} \mathbf{S}_{N} \mathbf{f}^{N, e x}
$$

(1) Consistency + Stability \Rightarrow Convergence

(2) Construction of the schemes
(3) Optimality

A couple of finite difference formulas $(d, s) \in\left(\mathbb{C}^{(\mathbb{Z})}\right)^{2}$ is consistent of order n, if

$$
\forall u \in C^{\infty}(\mathbb{R}), \sum_{j \in \mathbb{Z}} d_{j} u\left(x_{j}^{N}\right)+h^{2} s_{j} u^{\prime \prime}\left(x_{j}^{N}\right)=\mathcal{O}\left(h^{n+2}\right)
$$

Example: $d=2 \mathbb{1}_{\{0\}}-\mathbb{1}_{\{-1,1\}}="(-1,2,-1) "$ and $s=\mathbb{1}_{\{0\}}="(1)$.

A couple of finite difference formulas $(d, s) \in\left(\mathbb{C}^{(\mathbb{Z})}\right)^{2}$ is consistent of order n, if

$$
\forall u \in C^{\infty}(\mathbb{R}), \sum_{j \in \mathbb{Z}} d_{j} u\left(x_{j}^{N}\right)+h^{2} s_{j} u^{\prime \prime}\left(x_{j}^{N}\right)=\mathcal{O}\left(h^{n+2}\right)
$$

Example: $d=2 \mathbb{1}_{\{0\}}-\mathbb{1}_{\{-1,1\}}="(-1,2,-1) "$ and $s=\mathbb{1}_{\{0\}}="(1)$.
Remark : We only consider symmetric finite difference formulas

$$
\forall j \in \mathbb{Z}, d_{j}=d_{-j} \text { and } s_{j}=s_{-j}
$$

Choosing $u \equiv 1$ we get

$$
\sum_{j \in \mathbb{Z}} d_{j}=0
$$

It is easy to get such couples. For example, choose any $d \in \mathbb{C}^{(\mathbb{Z})}$ symmetric and satisfying

$$
\sum_{j \in \mathbb{Z}} d_{j}=0
$$

then we can get $s \in \mathbb{C}^{(\mathbb{Z})}$ such that (d, s) is consistent of order n solving the linear system

$$
\left(\frac{s_{0}}{2}, s_{1}, \ldots, s_{\frac{n}{2}-1}\right)\left((i-1)^{2 j-2}\right)_{1 \leq i, j \leq \frac{n}{2}}=-\sum_{j>0} d_{j}\left(\frac{j^{2}}{2}, \ldots, \frac{j^{n}}{n(n-1)}\right)
$$

To design matrices D_{N} and S_{N} from the formulas d and s, a natural choice would be the following:

$$
\left(\mathbf{D}_{N} \mathbf{u}\right)_{i}=\sum_{j \in \mathbb{Z}} d_{i-j} \mathbf{u}_{j} \text { and }\left(\mathbf{S}_{N} \mathbf{f}\right)_{i}=\sum_{j \in \mathbb{Z}} s_{i-j} \mathbf{f}_{j}
$$

To design matrices D_{N} and S_{N} from the formulas d and s, a natural choice would be the following:

$$
\left(\mathbf{D}_{N} \mathbf{u}\right)_{i}=\sum_{j \in \mathbb{Z}} d_{i-j} \mathbf{u}_{j} \text { and }\left(\mathbf{S}_{N} \mathbf{f}\right)_{i}=\sum_{j \in \mathbb{Z}} s_{i-j} \mathbf{f}_{j}
$$

Problem: it does not make sense on the boundary!
If we define the size of the stencil of d as

$$
\tau(d)=\max \left\{j \in \mathbb{Z} \mid d_{j} \neq 0\right\}
$$

then the previous formula involves terms like $\mathbf{u}_{1-\tau(d)}$.

Solution: To introduce formulas $\left(d^{i}, s^{i}\right)$ consistent of order n (or $n-2$) at a distance i of the boundary.

$$
\begin{aligned}
& \left(\mathbf{D}_{N} \mathbf{u}\right)_{i}:= \begin{cases}\sum_{j>0} d_{j-i}^{i} \mathbf{u}_{j} & \text { if } 1 \leq i \leq \tau(d), \\
\sum_{j \in \mathbb{Z}} d_{j-i} \mathbf{u}_{j} & \text { if } \tau(d)<i<N+1-\tau(d), \\
\sum_{j<N+1} d_{-j+i}^{N+1-i} \mathbf{u}_{j} & \text { if } N+1-\tau(d) \leq i \leq N+1 .\end{cases} \\
& \left(\mathbf{S}_{N} \mathbf{f}\right)_{i}:= \begin{cases}\sum_{j \in \mathbb{Z}} s_{j-i}^{i} \mathbf{f}_{j} & \text { if } 1 \leq i \leq \tau(d), \\
\sum_{j \in \mathbb{Z}} s_{j-i} \mathbf{f}_{j} & \text { if } \tau(d)<i<N+1-\tau(d), \\
\sum_{j \in \mathbb{Z}} s_{-j+i}^{N+1-i} \mathbf{f}_{j} & \text { if } N+1-\tau(d) \leq i \leq N+1 .\end{cases}
\end{aligned}
$$

(d^{i}, s^{i}) is consistent of order $\mu \in\{n, n-2\}$ at a distance i of the boundary if

$$
\begin{equation*}
\forall u \in C^{\infty}(\mathbb{R}), u(0)=0 \Rightarrow \sum_{j>-i} d_{j}^{i} u\left(x_{j+i}^{N}\right)+h^{2} \sum_{j \in \mathbb{Z}} s_{j}^{i} u^{\prime \prime}\left(x_{j+i}^{N}\right)=\mathcal{O}\left(h^{\mu+2}\right), \tag{1}
\end{equation*}
$$

(d^{i}, s^{i}) is consistent of order $\mu \in\{n, n-2\}$ at a distance i of the boundary if

$$
\begin{equation*}
\forall u \in C^{\infty}(\mathbb{R}), u(0)=0 \Rightarrow \sum_{j>-i} d_{j}^{i} u\left(x_{j+i}^{N}\right)+h^{2} \sum_{j \in \mathbb{Z}} s_{j}^{j} u^{\prime \prime}\left(x_{j+i}^{N}\right)=\mathcal{O}\left(h^{\mu+2}\right), \tag{1}
\end{equation*}
$$

Lemma

This scheme is consistent of order n (weakly if $\left(d^{i}, s^{i}\right)$ consistent of order $n-2$).
(d^{i}, s^{i}) is consistent of order $\mu \in\{n, n-2\}$ at a distance i of the boundary if
$\forall u \in C^{\infty}(\mathbb{R}), u(0)=0 \Rightarrow \sum_{j>-i} d_{j}^{i} u\left(x_{j+i}^{N}\right)+h^{2} \sum_{j \in \mathbb{Z}} s_{j}^{j} u^{\prime \prime}\left(x_{j+i}^{N}\right)=\mathcal{O}\left(h^{\mu+2}\right)$,

Lemma

This scheme is consistent of order n (weakly if (d^{i}, s^{i}) consistent of order $n-2$).

Question: How to choose (d^{i}, s^{i})?
This choice is crucial to hope stability. For example, we could choose $d^{i}=s^{i}=0$ but the scheme would not be stable!

There are methods based on monotonicity (i.e. $\left.\left(D_{N}^{-1}\right)_{i, j} \geq 0\right)$ but these methods are not very general and it is not clear if arbitrarily high order schemes may be designed.

Our choice: We keep the relation

$$
\left(\mathbf{D}_{N} \mathbf{u}\right)_{i}=\sum_{j \in \mathbb{Z}} d_{i-j} \mathbf{u}_{j}, \forall j=1, \ldots, N
$$

extending \mathbf{u} as an odd sequence in 0 and $N+1$.

Our choice: We keep the relation

$$
\left(\mathbf{D}_{N} \mathbf{u}\right)_{i}=\sum_{j \in \mathbb{Z}} d_{i-j} \mathbf{u}_{j}, \forall j=1, \ldots, N
$$

extending \mathbf{u} as an odd sequence in 0 and $N+1$. With the previous formalism we get

$$
d_{j}^{i}=d_{j}-d_{2 i+j}, \quad i=1, \ldots, \tau(d), \quad j \in \mathbb{Z}
$$

Our choice: We keep the relation

$$
\left(\mathbf{D}_{N} \mathbf{u}\right)_{i}=\sum_{j \in \mathbb{Z}} d_{i-j} \mathbf{u}_{j}, \forall j=1, \ldots, N
$$

extending \mathbf{u} as an odd sequence in 0 and $N+1$.
With the previous formalism we get

$$
d_{j}^{i}=d_{j}-d_{2 i+j}, \quad i=1, \ldots, \tau(d), \quad j \in \mathbb{Z}
$$

Lemma

There exists s^{i} such that $\left(d^{i}, s^{i}\right)$ is consistent of order $\mu \in\{n, n-2\}$ at a distance i of the boundary.

Sketch of proof: Let $u \in C^{\infty}(\mathbb{R})$ such that $u(0)=0$

$$
\begin{aligned}
\sum_{j>-i} d_{j}^{i} u\left(x_{i+j}^{N}\right) & =\sum_{j \in \mathbb{Z}} d_{j} u\left(x_{j+i}^{N}\right)-\sum_{j<-i} d_{j} u\left(x_{j+i}^{N}\right)-\sum_{j>-i} d_{j+2 i} u\left(x_{j+i}^{N}\right) \\
& =-h^{2} \sum_{j \in \mathbb{Z}} s_{j} u^{\prime \prime}\left(x_{j+i}^{N}\right)-\sum_{j>0} d_{i+j}\left(u\left(x_{j}^{N}\right)+u\left(x_{-j}^{N}\right)\right)+\mathcal{O}\left(h^{n+2}\right) .
\end{aligned}
$$

However, we have
$u\left(x_{j}^{N}\right)+u\left(x_{-j}^{N}\right)=u\left(x_{j}^{N}\right)+u\left(x_{-j}^{N}\right)-2 u(0)=-h^{2} \sum_{I \in \mathbb{Z}} b_{l}^{j} u^{\prime \prime}\left(x_{l}^{N}\right)+\mathcal{O}\left(h^{\mu+2}\right)$,
where b^{j} is obtained solving the linear system

$$
\left(\frac{b_{0}^{j}}{2}, s_{1}, \ldots, b_{\frac{\mu}{2}-1}^{j}\right)\left((i-1)^{2 j-2}\right)_{1 \leq i, j \leq \frac{\mu}{2}}=-\left(\frac{j^{2}}{2}, \ldots, \frac{j^{\mu}}{\mu(\mu-1)}\right)
$$

Question : Why such a choice on the boundary ?

Question : Why such a choice on the boundary ?
We have constructed

$$
\begin{array}{lll}
\mathscr{S}_{\mathbb{C}} & \rightarrow M_{N}(\mathbb{C}) \\
d & \mapsto & \mathbf{D}_{N}(d)
\end{array}
$$

with $\mathscr{S}_{\mathbb{C}}$ the space of symmetric complex valued formulas.

Question : Why such a choice on the boundary ?
We have constructed

$$
\begin{array}{lll}
\mathscr{S}_{\mathbb{C}} & \rightarrow M_{N}(\mathbb{C}) \\
d & \mapsto & \mathbf{D}_{N}(d)
\end{array}
$$

with $\mathscr{S}_{\mathbb{C}}$ the space of symmetric complex valued formulas. If we equip $\mathscr{S}_{\mathbb{C}}$ of its structure of algebra for the convolution, it is a morphism of algebra!

Question : Why such a choice on the boundary ?
We have constructed

$$
\begin{array}{lll}
\mathscr{S}_{\mathbb{C}} & \rightarrow & M_{N}(\mathbb{C}) \\
d & \mapsto & \mathbf{D}_{N}(d)
\end{array}
$$

with $\mathscr{S}_{\mathbb{C}}$ the space of symmetric complex valued formulas. If we equip $\mathscr{S}_{\mathbb{C}}$ of its structure of algebra for the convolution, it is a morphism of algebra!

However, if $a=2 \mathbb{1}_{\{0\}}-\mathbb{1}_{\{-1,1\}}="(-1,2,-1) "$ then

$$
\begin{array}{ll}
\mathbb{C}[X] & \rightarrow \mathscr{S}_{\mathbb{C}} \\
P & \mapsto P(a)
\end{array} \text { is an isomorphism of algebra. }
$$

Question : Why such a choice on the boundary ?
We have constructed

$$
\begin{array}{lll}
\mathscr{S}_{\mathbb{C}} & \rightarrow M_{N}(\mathbb{C}) \\
d & \mapsto & \mathrm{D}_{N}(d)
\end{array}
$$

with $\mathscr{S}_{\mathbb{C}}$ the space of symmetric complex valued formulas. If we equip $\mathscr{S}_{\mathbb{C}}$ of its structure of algebra for the convolution, it is a morphism of algebra!

However, if $a=2 \mathbb{1}_{\{0\}}-\mathbb{1}_{\{-1,1\}}="(-1,2,-1) "$ then

$$
\begin{array}{ll}
\mathbb{C}[X] & \rightarrow \mathscr{S}_{\mathbb{C}} \\
P & \mapsto P(a)
\end{array} \text { is an isomorphism of algebra. }
$$

Conclusion: if $d=P(a)$ then

$$
\mathbf{D}_{N}(d)=\mathbf{D}_{N}(P(a))=P\left(\mathbf{D}_{N}(a)\right)=: P\left(\mathbf{A}_{N}\right)
$$

\mathbf{A}_{N} is the square matrix defined by

$$
\mathbf{A}_{N}=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathscr{L}\left(\mathbb{C}^{N}\right)
$$

It is a well known matrix whose spectral decomposition is given by

$$
\mathbf{A}_{N} \mathbf{e}_{k}^{N}=4 \sin ^{2}\left(\frac{\pi}{2} k h\right) \mathbf{e}_{k}^{N}, \quad \text { with } \mathbf{e}_{k}^{N}:=(\sin (\pi k h j))_{j=1, \ldots, N}
$$

\mathbf{A}_{N} is the square matrix defined by

$$
\mathbf{A}_{N}=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathscr{L}\left(\mathbb{C}^{N}\right)
$$

It is a well known matrix whose spectral decomposition is given by

$$
\mathbf{A}_{N} \mathbf{e}_{k}^{N}=4 \sin ^{2}\left(\frac{\pi}{2} k h\right) \mathbf{e}_{k}^{N}, \quad \text { with } \mathbf{e}_{k}^{N}:=(\sin (\pi k h j))_{j=1, \ldots, N}
$$

Conclusion: To get convergence, we just have to study stability of matrices of the type $P\left(\mathbf{A}_{N}\right)$!

(1) Consistency + Stability \Rightarrow Convergence

(2) Construction of the schemes

(3) Optimality

If $I=\tau(d)-1$ and $m=\tau(s)$ the matrices we have constructed are

To get efficient schemes, we want to minimise $/$ and m but to conserve the consistency order.

We can look for symmetric formulas d, s as polynomial of a

$$
d=P(a) \text { and } s=Q(a)
$$

Considering formulas of consistency order larger than or equal 2 , necessarily we have $P(0)=0$. Consequently, it can be factorized

$$
P=X R
$$

We can look for symmetric formulas d, s as polynomial of a

$$
d=P(a) \text { and } s=Q(a)
$$

Considering formulas of consistency order larger than or equal 2 , necessarily we have $P(0)=0$. Consequently, it can be factorized

$$
P=X R
$$

We remark that

$$
\tau(d)=1+\operatorname{deg} R \text { and } \tau(s)=\operatorname{deg} Q .
$$

We can look for symmetric formulas d, s as polynomial of a

$$
d=P(a) \text { and } s=Q(a)
$$

Considering formulas of consistency order larger than or equal 2 , necessarily we have $P(0)=0$. Consequently, it can be factorized

$$
P=X R
$$

We remark that

$$
\tau(d)=1+\operatorname{deg} R \text { and } \tau(s)=\operatorname{deg} Q
$$

Lemma

(d, s) is consistent of order $n=2 k$ if and only if

$$
R(X)=C(X) Q(X) \quad \bmod X^{k}
$$

where

$$
C(X):=4\left(\frac{\arcsin \left(\frac{\sqrt{X}}{2}\right)}{\sqrt{X}}\right)^{2}=2 \sum_{n \in \mathbb{N}} \frac{X^{n}}{(n+1)^{2} C_{2 n+2}^{n+1}}
$$

Looking for a solution of $R(X)=C(X) Q(X) \bmod X^{k}$ with $\operatorname{deg} R \leq I$ and $\operatorname{deg} Q \leq m$ we get a linear system with

- k equations,
- $I+m+2$ unknowns.

Looking for a solution of $R(X)=C(X) Q(X) \bmod X^{k}$ with $\operatorname{deg} R \leq I$ and $\operatorname{deg} Q \leq m$ we get a linear system with

- k equations,
- $I+m+2$ unknowns.

So, if $I+m+1 \geq k$ there is at least one non trivial solution.

Looking for a solution of $R(X)=C(X) Q(X) \bmod X^{k}$ with $\operatorname{deg} R \leq I$ and $\operatorname{deg} Q \leq m$ we get a linear system with

- k equations,
- $I+m+2$ unknowns.

So, if $I+m+1 \geq k$ there is at least one non trivial solution.

Lemma

For any fixed, I, m, k such that $I+m+1=k$, this solution is unique up to multiplication by a constant.

We denote it $R_{l, m}$ and $Q_{l, m}$ (choosing $R_{l, m}(0)=1$).

Sketch of proof: It is a classical problem of Padé approximant. Indeed, we are looking for a rational approximation $\frac{R}{Q}$ of C in $X=0$.
Following classical theory, this result is a corollary of the fact that $C(-4 X)$ is a Stieltjes transform of a positive function $\rho:(0,1) \rightarrow \mathbb{R}$,

$$
C(-4 X)=\int_{0}^{1} \frac{\rho(s)}{1+s X} d s
$$

Theorem: D. Karp and E. Prilepkina (2012)

$$
\text { If }\left\{\begin{array}{l}
1 \leq \alpha_{1} \leq \cdots \leq \alpha_{q}, \\
0<\beta_{1} \leq \cdots \leq \beta_{q}, \\
\forall k \in \llbracket 1, q \rrbracket, \sum_{j=1}^{k} \alpha_{j} \leq \sum_{j=1}^{k} \beta_{j}
\end{array}\right.
$$

then ${ }_{q+1} F_{q}\left[\begin{array}{c}1, \alpha_{1}, \ldots, \alpha_{q} \\ \beta_{1}, \ldots, \beta_{q}\end{array} ;-X\right]$ is a Stieltjes transform of a positive function $\rho:(0,1) \rightarrow \mathbb{R}$.

$$
{ }_{p} F_{q}\left[\begin{array}{l}
\alpha_{1}, \ldots, \alpha_{p} \\
\beta_{1}, \ldots, \beta_{q}
\end{array} ; X\right]:=\sum_{k \in \mathbb{N}} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{p}\right)_{k}}{(\beta)_{1} \ldots\left(\beta_{q}\right)_{k}} \frac{X^{k}}{k!} \text { with }(\gamma)_{k}=\prod_{j=0}^{k-1} \gamma+j .
$$

Theorem: D. Karp and E. Prilepkina (2012)

$$
\text { If }\left\{\begin{array}{l}
1 \leq \alpha_{1} \leq \cdots \leq \alpha_{q} \\
0<\beta_{1} \leq \cdots \leq \beta_{q}, \\
\forall k \in \llbracket 1, q \rrbracket, \sum_{j=1}^{k} \alpha_{j} \leq \sum_{j=1}^{k} \beta_{j}
\end{array}\right.
$$

then ${ }_{q+1} F_{q}\left[\begin{array}{c}1, \alpha_{1}, \ldots, \alpha_{q} \\ \beta_{1}, \ldots, \beta_{q}\end{array} ;-X\right]$ is a Stieltjes transform of a positive function $\rho:(0,1) \rightarrow \mathbb{R}$.

$$
\begin{gathered}
{ }_{p} F_{q}\left[\begin{array}{l}
\alpha_{1}, \ldots, \alpha_{p} \\
\beta_{1}, \ldots, \beta_{q}
\end{array} ; X\right]:=\sum_{k \in \mathbb{N}} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{p}\right)_{k}}{(\beta)_{1} \ldots\left(\beta_{q}\right)_{k}} \frac{X^{k}}{k!} \text { with }(\gamma)_{k}=\prod_{j=0}^{k-1} \gamma+j . \\
C(X)={ }_{3} F_{2}\left[\begin{array}{c}
1,1,1 \\
\frac{3}{2}, 2
\end{array} \frac{X}{4}\right]
\end{gathered}
$$

Corollary: Zero points of $R_{l, m}$ are localised in $(4, \infty)$.

Theorem

Let $P \in \mathbb{C}[X]$ be a polynomial such that

$$
\left.\left.P(0)=0, P^{\prime}(0) \neq 0 \text { and } \forall x \in\right] 0,4\right], P(x) \neq 0
$$

Then the sequence of matrices $\left(P\left(\mathbf{A}_{N}\right)\right)_{N \in \mathbb{N}^{*}}$ is strongly stable.
Application: $P=X R_{l, m}$.

Corollary: Zero points of $R_{l, m}$ are localised in $(4, \infty)$.

Theorem

Let $P \in \mathbb{C}[X]$ be a polynomial such that

$$
\left.\left.P(0)=0, P^{\prime}(0) \neq 0 \text { and } \forall x \in\right] 0,4\right], P(x) \neq 0
$$

Then the sequence of matrices $\left(P\left(\mathbf{A}_{N}\right)\right)_{N \in \mathbb{N}^{*}}$ is strongly stable.
Application: $P=X R_{l, m}$.
Conclusion: If we want a scheme of order $n=2 k$ with $I=\tau(d)+1$ and $m=\tau(m)$ as small as possible, we have to choose $I+m+1=k$. In this case there exists an unique normalized scheme given by $d=\left(X R_{l, m}\right)(a)$ and $s=Q_{l, m}(a)$. Furthermore, this scheme is strongly stable and so convergent of order n.

Figure: Convergence curves, with $u(x)=x(1-x) e^{4 \cos (41 x)}$ and $E_{N}:=\left\|\mathbf{u}^{N}-\mathbf{u}^{N, e x}\right\|_{\infty}, N \in\{200,235,271,300,341,372,401,447,500\}$, for the optimal schemes, with $n=10, \mu=8, d=d^{l, m}$ and $s=s^{l, m}$.

Sketch of proof: This property is well known for \mathbf{A}_{N}, so we just have to prove that if R does not vanish on $[0,4]$ then

$$
\sup _{N \in \mathbb{N}^{*}}\left\|R\left(\mathbf{A}_{N}\right)^{-1}\right\|_{\infty}<\infty
$$

Sketch of proof: This property is well known for \mathbf{A}_{N}, so we just have to prove that if R does not vanish on $[0,4]$ then

$$
\sup _{N \in \mathbb{N}^{*}}\left\|R\left(\mathbf{A}_{N}\right)^{-1}\right\|_{\infty}<\infty
$$

Consider the Fourier transform of $R^{-1}\left(4 \sin ^{2}\left(\frac{\theta}{2}\right)\right)$

$$
R^{-1}\left(4 \sin ^{2}\left(\frac{\theta}{2}\right)\right)=\sum_{n \in \mathbb{N}} a_{n} \cos (n \theta), \quad\left(a_{n}\right) \in \ell^{1}
$$

Sketch of proof: This property is well known for \mathbf{A}_{N}, so we just have to prove that if R does not vanish on $[0,4]$ then

$$
\sup _{N \in \mathbb{N}^{*}}\left\|R\left(\mathbf{A}_{N}\right)^{-1}\right\|_{\infty}<\infty
$$

Consider the Fourier transform of $R^{-1}\left(4 \sin ^{2}\left(\frac{\theta}{2}\right)\right)$

$$
R^{-1}\left(4 \sin ^{2}\left(\frac{\theta}{2}\right)\right)=\sum_{n \in \mathbb{N}} a_{n} \cos (n \theta), \quad\left(a_{n}\right) \in \ell^{1}
$$

Then observe that

$$
\mathbf{D}_{N}\left(\frac{\mathbb{1}_{\{-n, n\}}}{2}\right) \mathbf{e}_{k}^{N}=\cos (n \pi k h) \mathbf{e}_{k}^{N}
$$

Sketch of proof: This property is well known for \mathbf{A}_{N}, so we just have to prove that if R does not vanish on $[0,4]$ then

$$
\sup _{N \in \mathbb{N}^{*}}\left\|R\left(\mathbf{A}_{N}\right)^{-1}\right\|_{\infty}<\infty
$$

Consider the Fourier transform of $R^{-1}\left(4 \sin ^{2}\left(\frac{\theta}{2}\right)\right)$

$$
R^{-1}\left(4 \sin ^{2}\left(\frac{\theta}{2}\right)\right)=\sum_{n \in \mathbb{N}} a_{n} \cos (n \theta), \quad\left(a_{n}\right) \in \ell^{1}
$$

Then observe that

$$
\mathbf{D}_{N}\left(\frac{\mathbb{1}_{\{-n, n\}}}{2}\right) \mathbf{e}_{k}^{N}=\cos (n \pi k h) \mathbf{e}_{k}^{N}
$$

Consequently, we have

$$
R\left(\mathbf{A}_{N}\right)^{-1}=\sum_{n \in \mathbb{N}} a_{n} \mathbf{D}_{N}\left(\frac{\mathbb{1}_{\{-n, n\}}}{2}\right)
$$

However, we have obviously $\left\|\mathbf{D}_{N}\left(\frac{\mathbb{I}_{\{-n, n\}}}{2}\right)\right\|_{\infty}=1$, so we get

$$
\left\|R\left(\mathbf{A}_{N}\right)^{-1}\right\|_{\infty} \leq\left\|\left(a_{n}\right)\right\|_{\ell^{1}}
$$

(1) Consistency + Stability \Rightarrow Convergence

(2) Construction of the schemes

(4) Resonances

Consider a scheme where $\mathbf{D}_{N}(d)=P\left(\mathbf{A}_{N}\right)$. If we don't take care in the construction of d, P could vanish into $(0,4)$.

However, we have

$$
\mathrm{Sp}_{\mathbb{C}} \mathbf{D}_{N}(d)=\left\{\left.P\left(4 \sin ^{2}\left(\frac{\pi k h}{2}\right)\right) \right\rvert\, k=1, \ldots, N\right\}
$$

So $\mathrm{D}_{N}(d)$ could have very small eigenvalues. (stability \simeq control of $\left.h^{2}\left\|\mathbf{D}_{N}^{-1}\right\|\right)$

Consider a scheme where $\mathbf{D}_{N}(d)=P\left(\mathbf{A}_{N}\right)$. If we don't take care in the construction of d, P could vanish into $(0,4)$.

However, we have

$$
\operatorname{Sp}_{\mathbb{C}} \mathbf{D}_{N}(d)=\left\{\left.P\left(4 \sin ^{2}\left(\frac{\pi k h}{2}\right)\right) \right\rvert\, k=1, \ldots, N\right\}
$$

So $\mathrm{D}_{N}(d)$ could have very small eigenvalues. (stability \simeq control of $\left.h^{2}\left\|\mathbf{D}_{N}^{-1}\right\|\right)$

Questions:

- In general, does P really have zero points into $(0,4)$?
- Are small eigenvalues of $\mathbf{D}_{N}(d)$ large enough to allow stability ?

Theorem

For almost all symmetric \mathbb{C} valued formula d such that

$$
\sum_{j \in \mathbb{Z}} d_{j}=0,
$$

P does not vanish in $] 0,4], P(0)=0$ and $P^{\prime}(0) \neq 0$.
Corollary: Almost all complex valued scheme (consistent of order larger than or equal to 2) is strongly stable !

Theorem

For almost all symmetric \mathbb{C} valued formula d such that

$$
\sum_{j \in \mathbb{Z}} d_{j}=0,
$$

P does not vanish in $] 0,4], P(0)=0$ and $P^{\prime}(0) \neq 0$.
Corollary: Almost all complex valued scheme (consistent of order larger than or equal to 2) is strongly stable !

Problem: In practice, we consider real valued formulas. And for any $l>0$,

$$
\operatorname{Int}\left\{R \in \mathbb{R}_{l}[X] \mid \exists x_{0} \in(0,4), R\left(x_{0}\right)=0\right\} \neq \emptyset
$$

It can not be a null set.

A numerical experiment:

- Fix $I \geq 1$ and $n \in 2 \mathbb{N}^{*}$,
- Choose randomly a formula d of sum 0 such that $\tau(d) \leq I+1$,
- Determine s to get a couple (d, s) consistent of order n,
- Assemble the matrices $\mathbf{D}_{N}(d)$ and \mathbf{S}_{N},
- Choose a test function $u \in C^{\infty}(\mathbb{R})$ such that $u(0)=u(1)=0$ and define $f=-u^{\prime \prime}$,
- Plot the convergence curves.

Figure: Convergence curves with $u(x)=x(1-x) e^{2 x}, n=2$ and $E_{N}:=\left\|\mathbf{u}^{N}-\mathbf{u}^{N, e x}\right\|_{\infty}$. For the non-resonant scheme $d=2 \mathbb{1}_{\{0\}}-\mathbb{1}_{\{-1,1\}}$ and for the quasi-resonant scheme $d=(2-6 z) \mathbb{1}_{\{0\}}+(4 z-1) \mathbb{1}_{\{-1,1\}}-z \mathbb{1}_{\{-2,2\}}$ with $z=0.358946420670826$.

Figure: Convergence curves with $u(x)=x(1-x) e^{2 x}, n=4$ and $E_{N}:=\left\|\mathbf{u}^{N}-\mathbf{u}^{N, e x}\right\|_{\infty}$. For the non-resonant scheme $d=2 \mathbb{1}_{\{0\}}-\mathbb{1}_{\{-1,1\}}$ and for the quasi-resonant scheme $d=(2-6 z) \mathbb{1}_{\{0\}}+(4 z-1) \mathbb{1}_{\{-1,1\}}-z \mathbb{1}_{\{-2,2\}}$ with $z=32.12121212$.

Observations:

- Two kinds of behaviours.
- Resonant case $\Longleftrightarrow P$ vanishes into]0, 4]
- In the resonant case the scheme seems convergent with the good rate.

Theorem

Let $P \in \mathbb{C}[X]$ be a polynomial and let Λ be the set of the roots of P in $[0,4]$ and assume that P satisfies the following assumptions:
i) $0 \in \Lambda$,
ii) $4 \notin \Lambda$,
iii) the roots of P in $[0,4]$ are simple,
iv) $\exists \delta: \mathbb{N}^{*} \rightarrow \mathbb{R}_{+}^{*}$,

$$
\forall \lambda \in \Lambda, \forall q \in \mathbb{N}^{*}, \forall 1 \leq p \leq q-1, \quad 0<\delta_{q} \leq\left|\lambda-4 \sin ^{2}\left(\frac{\pi}{2} \frac{p}{q}\right)\right|
$$

Then the sequence of finite difference matrices $\left(P\left(\mathbf{A}_{N}\right)\right)_{N \in \mathbb{N}^{*}}$ is stable relatively to the sequence $\eta_{N}=\frac{1}{\delta_{N+1}}$

Remark: If $\delta_{N+1}=h^{2}$ then $P\left(\mathbf{A}_{N}\right)$ is stable.

Theorem Khinchin's

Let $\left(\nu_{q}\right)_{q}$ be a sequence of positive real numbers such that the series $\sum \nu_{q}$ converges. Then, for almost all $\alpha \in \mathbb{R}$, there exists a constant $c>0$ such that for all $p, q \in \mathbb{Z} \times \mathbb{N}^{*}$, one has

$$
\left|\alpha-\frac{p}{q}\right| \geq c \frac{\nu_{q}}{q} .
$$

Theorem Khinchin's

Let $\left(\nu_{q}\right)_{q}$ be a sequence of positive real numbers such that the series $\sum \nu_{q}$ converges. Then, for almost all $\alpha \in \mathbb{R}$, there exists a constant $c>0$ such that for all $p, q \in \mathbb{Z} \times \mathbb{N}^{*}$, one has

$$
\left|\alpha-\frac{p}{q}\right| \geq c \frac{\nu_{q}}{q} .
$$

"Corollary"

If $\delta_{q}=\frac{\nu_{q}}{q}$ and $q \nu_{q}$ is bounded then for all $I \geq 1$ and almost all $P \in X \mathbb{R}_{/}[X]$, if Λ is the set of the roots of P into $[0,4]$ then there exists $C>0$ s.t.
i) $0 \in \Lambda$,
ii) $4 \notin \Lambda$,
iii) the roots of P in $[0,4]$ are simple,
iv) $\exists \delta: \mathbb{N}^{*} \rightarrow \mathbb{R}_{+}^{*}$,

$$
\forall \lambda \in \Lambda, \forall q \in \mathbb{N}^{*}, \forall 1 \leq p \leq q-1, \quad 0<\frac{\nu_{q}}{q} \leq C\left|\lambda-4 \sin ^{2}\left(\frac{\pi}{2} \frac{p}{q}\right)\right| .
$$

In practice we can choose $\nu_{q}=\frac{1}{q \log ^{2} q}$.
Conclusion: Almost all real valued consistent scheme of order $n \geq 2$ is convergent at the rate $h^{n} \log ^{2}(h)$.

In practice we can choose $\nu_{q}=\frac{1}{q \log ^{2} q}$.
Conclusion: Almost all real valued consistent scheme of order $n \geq 2$ is convergent at the rate $h^{n} \log ^{2}(h)$.

Thank you for your attention

