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Introduction

Context

Water waves models
@ Dispersive regularization of hyperbolic conservation laws
@ Dispersive shock waves:

oscillatory structure,
the width of the socillatory region grows with time.

Numerical simulations are difficult
@ Rankine-Hugoniot jump conditions not satisfied
@ Spectral techniques:

-+ suitable to describe oscillatory phenomena,
- periodic boundary conditions,
- very large domains for long time simulations,
- dynamic of dispersive equations very different in periodic domain and in
the whole space.
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Introduction

Context

Water waves models
@ Dispersive regularization of hyperbolic conservation laws
@ Dispersive shock waves:

oscillatory structure,
the width of the socillatory region grows with time.

Transparent boundary conditions
@ adapted to simulations for the whole space domain,

@ The solution calculated in the computational domain is an
approximation of the exact solution restricted to the computational
domain.
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Introduction

Equations

Korteweg de Vries equation

3
Oru + Oxu + ?nuaxu-l— %(‘Lxxu =0, Vt>0, VxeR.

As 1 and p — 0 we have

Oxu= —0u~+ O(n+ p)

One can trade a spatial derivative for a time derivative
KdV-BBM equation

Ot (u — adxxu) + Ox u+3

2u6u+(% )i =0, YO<a<

o=
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Introduction

Equations

KdV-BBM equation

Ot (u — adxxu) + Oxu + 3?77u8xu + (E —a)0uxt =0, VO<a<

6

o=

When a = 11/6, we have the
Benjamin-Bona-Mahoney equation

3
Ot (U — aOxxu) + Oxu + ?nuﬁxu =0, Vt>0, VxeR.
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Introduction

Equations

Korteweg de Vries equation

3
Oru + Oxu + ?nuaxu-l— %@Xxu =0, Vt>0, VxeR.

KdV-BBM equation

Ot (u — aOxxt) + Oxu + 3777u8xu + (% —a)Ouxt =0, VO<a<

o=

@ solitary waves and cnoidal (periodic) waves solutions for these
equations

@ interaction between these waves

@ role in the description of the solutions for asymptotically large time.
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Introduction

Equations

We focus on KdV-BBM linearized about a constant state v = U. This
yields

linearized KdV-BBM equation

Ot(u — Oxxtt) + cOxu + €0xxt =0, VYVt >0, Vx€eR, J

o dispersion parameters: «, €
e velocity: ¢ = (1+ 377%
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State of the art

@ Schrodinger equation: discrete artifical boundary conditions:
Arnorld, Ehrhardt, Sofronov (2003),

Arnorld, Ehrhardt, Schulte, Sofronov (2012),

Ehrhardt (2001,2008),

Ehrhardt, Arnold (2001)

@ Pure BBM case, € = 0: continuous and discrete transparent boundary
conditions, Besse, Mésognon-Giraud, Noble (2016)
@ Pure KdV case, a = 0:

» continuous TBC, Zheng (2006), Zheng, Wen, Han (2008)
> exact transparent and discrete boundary conditions, Besse, Ehrhardt,
Lacroix-Violet (2016)

\4

vvyy
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Introduction

State of the art
In Besse, Ehrhardt, Lacroix-Violet (2016)

e DTBC derived for an upwind (first order) and a centered (second
order) spatial discretization, time discretization based on the
Crank-Nicolson scheme.

o DTBC perfectly adapated to the scheme, retain the stability property
of the discretization method

@ no reflexion when compared to the discrete whole space solution.

@ In the case of the linearized KdV equation

» Not explicit

» Requires the numerical inversion of the Z-transformation (discrete
analogue of the inverse Laplace transform)

» Numerical error and instabilities for large time simulations, Arnorld,
Ehrhardt, Sofronov (2003), Zisowsky (2003)
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Exact transparent boundary conditions

© Exact transparent boundary conditions
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Exact transparent boundary conditions

Initial boundary value problem

Ot(U — aOyxtt) + cOxu + €Dt = 0, Vt >0, Vx€R,
u(0,x) = uwp(x), VxeR,

XI|_>nC1>O u(t,x) = Xﬂrpoo u(t,x) =0,

where
@ up is compactly supported in a finite computational interval [x;, x]
with x, < x,
@ c € R and a, e > 0 are respectively a velocity and two dispersion
parameters.
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Exact transparent boundary conditions

Continuous artificial boundary condition problem

Outside [xg, x,], we rewrite the equation as

u 0 1 0 u
Ol v ] = 0 0 1 v
—e719;, —elc aclo; w

We use the Laplace transform with respect to time. Then for all s € C
with R(s) > 0:

I} 0 1 0 i} I}
ol V] = 0 0 1 V] i=Age(s, o) | ¥
w —els —e7lc aels w %
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Exact transparent boundary conditions

Continuous artificial boundary condition problem

The general solutions of this system of ODE are given explicitly by

= MY (5) 42X Vy(s) 4 M V(5), x < xp, x> xi,

DO

where Ag(s), k = 1,2,3 are the roots of
P(s,c,a,e,A) =s+ch—ash?>+eX3 =0

and V, = (1, Ak, )\f) T are the right eigenvectors of the matrix A, (s, ¢)
associated to the eigenvalue \g.
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Exact transparent boundary conditions

Continuous artificial boundary condition problem

Proposition

For all € > 0 and for all «« > 0, the roots Ak(s), k = 1,2,3 possess the
following separation property:

%()\1(5)) <0, ?R()\Q(S)) >0, %()\3(5)) > 0, V%(S) > 0.

Sketch of the proof:

@ The property has been proved if & = 0 in Besse, Ehrhardt,
Lacroix-Violet (2016).

@ Continuity argument for the number of roots with a positive real part.
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Exact transparent boundary conditions

Continuous artificial boundary condition problem

Now, we search for solutions (&1, ¥, W) T such that lim,_, &(s,x) = 0. It
is satisfied provided that we impose the condition

<>

(s,x)
(s,x) | =0,
(s, xr)

<>

Vi(s) A

>

which in turn provides the following two boundary conditions

Oxt(s,x,) = M(s)a(s, x,), D li(s, x,) = A3(s) (s, x,).
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Continuous artificial boundary condition problem

A similar argument to obtain solutions (&, ¥, W) such that
limy— oo U(s,x) = 0. We therefore have to impose the condition

(S,Xg)
(S,Xg) =0,
(x, x¢)

VQ(S) AN V3(S) .

S

which gives the following boundary condition.

(9XXlI)(S,Xg) — ()\2(5) + )\3(5))6Xf1(S,Xg) + )\2)\31\1(5,Xg) =0.
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Continuous artificial boundary condition problem

A similar argument to obtain solutions (&, ¥, W) such that
limy— oo U(s,x) = 0. We therefore have to impose the condition

(S,Xg)
(vaf) =0,
(x, x¢)

VQ(S) AN V3(S) .

S

which gives the following boundary condition.

Dedi(s, x¢) + ()\1(5) - O‘?S) B, fi(s, x;)
+ ()\1(5)2 - %;)\1(5) + g) a(s,x;) =0.
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Exact transparent boundary conditions

Continuous artificial boundary condition problem

Written in time variables, the boundary conditions read

6Xu(t,x,) = E_l()‘l(s)) * u(t,xr),
Dcu(t, x,) = L7HA(5)) * ult xc),
Dxcti(t, x0) + L7H(A1(s) — —) * Oy U(t Xp)

+L” 1()\1(5)2 - —>\1( )) * u(t xp) + — u(t x¢) = 0.
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Exact transparent boundary conditions

Continuous artificial boundary condition problem

Proposition

Assume that

2 +2 (R0309) - M) _ aR(iENn (i) >0, VEER

Then the problem

Or(u — aOxxtt) + cOxu + € Ot = 0, (t,x) € RS x (xg, xr),
u(0, x) = wo(x), x € (xg, xr),

with the previous boundary conditions is H-stable. For any t > 0,
Xr

/Xr u?(t, x) + a(Oxu)?(t, x) dx < / u3(x) + a(Oxup)? dx.

Xe Xe
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Exact transparent boundary conditions

Continuous artificial boundary condition problem

Sketch of the proof:

@ The root A1(s) is defined for all s € C such that R(s) > 0. We define
A1(i€) with € € R as

A(i€) = Jim, A1(n + ).
e &(t) = &(0) + J(x¢) — J(xr) with
J(x) = /t(cu2 + 2eud2 u — e(Dxu)? — 20ud?u)(t, x) dt
0

o We let U = u(t,xg)1jp 7 and V = Ou(t, x¢)1o, 1 on the left hand
side, U = u(t, x)1[o, 7] on the right hand side to rewrite the integrals

“+o0o
in the form / ... dt and use the boundary conditions to get the
0
result.

David Sanchez (Toulouse) 31/01/2018 12 /33



Exact transparent boundary conditions

Continuous artificial boundary condition problem

Proposition
The stability condition given in Prop. 2 is always fulfilled:
A1 (i€)]?
vek £ e (R00e) - PO - argioniio) 2o

Sketch of the proof: study of all the cases obtained by writing
M(i&) = a+ib.
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Discrete transparent boundary conditions

© Discrete transparent boundary conditions
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Discrete transparent boundary conditions

Ideas

@ Not possible to compute explicitly the inverse Laplace transform of
Ay k=1,2,3,
= no closed form of the boundary conditions.
= difficult to discretize the transparent boundary conditions

Construction of the transparent boundary conditions on the fully
discrete scheme.

Z transform instead of the Laplace transform

As in continuous case, explicit inverse Z transform is not available.
= heavy numerical cost (see Besse, Ehrhardt, Lacroix-Violet (2016))

Alternative approach to construct "explicit” coefficients of discrete
kernels.
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Discrete transparent boundary conditions

Numerical scheme for linear KdV-BBM equation

J{H—l _ UJU A5 ( _/n-:_ll n+1 + un+1 o J{1+1 + 2“_/{’ o Uf—l)

AH n+1 n+1 AH n n
o W — ) (41— uiy)

AD [ ni1 +1 +1 1
to ( uiis — 207y 20T - ”J?—2>

AD [ p n .
+ T(UJ+2 2uj+1+2u —uj_2):0, Vji=0,...,J,

with
_ cot _edt o«
H=%x) P sx3 BT sx2

dt the time step, dx the space step, J = (x- — x¢)/dx, uf' the
approximation of the exact solution u(t,x) at points jox and instants ndt
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Discrete transparent boundary conditions

Z—transform of the equation

0(z) = Z2{(u")n}(2) = Zuzk, z| >R >0,

where R is the convergence radius of the Laurent series and zeC.

Denoting ; = @j(z) the Z—transform of the sequence (u;
obtain the homogeneous fourth order difference equation

o _ 2_)\H+4>\BZ—1 o
j+2 )\D )\D z+1 lj+1

4 i_|_8)\_5 z—1,
AD AD Z+lj

(M), we
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Discrete transparent boundary conditions

Z—transform of the equation

0(z) = Z2{(u")n}(2) = Zuzk, z| >R >0,

where R is the convergence radius of the Laurent series and z € C.
Associated characteristic polynomial:

P(r) = F*—(2—atup(2)r +<;‘—j+2n) p(2)P +(2—a—up(2))r—1 = 0.

with
/\_H _ﬁ z—1 1—2z1

a:)\D’ /’L )\D’ p(Z):Z+1:1+Z_1
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Discrete transparent boundary conditions

Z—transform of the equation

Proposition
Assume e > 0, > 0, 6x,6t > 0 and c € R. Then, the roots of P are well
separated according to

In(z) <1, |r(2)|<1, In(z)] > 1, |n(z)>1

which defines the discrete separation properties. As a consequence, there
is a smooth parameterization of the “stable” (respectively “unstable”)
subspace E°(z) (resp EY(z)) of solutions to (8) which decrease to 0 as
Jj — 400 (respectively j — —oo) for |z| > R with R large enough.
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Discrete transparent boundary conditions

Discrete transparent boundary conditions
According to this proposition, we set
5°(2) = n(2) + r(2), P*(2) = n(z)r(z2),

5%(2) = r3(2) + na(2), P(2) = r3(2)ra(2)

and the characteristic polynomial P admits the factorization

P(r) = (r2 - SY(2)r+ P”(z)) (r2 - S%(2)r + Ps(z))
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Discrete transparent boundary conditions

The discrete transparent boundary conditions are written as follows
On the left boundary, one must have

(fl_g, fl_l, flo, fll) S EU(Z)
which is also equivalent to the following boundary conditions
i —S“(z) o + PY(z) u—1 =0,

o — SY(z) -1 + PY(z2) u—2 =0.

David Sanchez (Toulouse) 31/01/2018 18 / 33



Discrete transparent boundary conditions

The discrete transparent boundary conditions are written as follows
On the other hand, one must have on the right boundary

(D1, 0y, Oy, 0y42) € E3(2)

which is also written as

b0 — SS(Z) Oyy1 + PS(Z) by =0,

Uyp1—S°(z) 0y + P°(z) 0y—1 = 0.
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Discrete transparent boundary conditions

Discrete transparent boundary conditions

The coefficients of P admits a singularity at z = —1
= bad behavior of the coefficients in the expansion of SY, P¥ 5% Ps.
= Alternative boundary conditions by multiplying 1 + z

Inverting the Z—transform, one finds that the left and right boundary

conditions are written as:

ul ™ b Ul 8 kg udtt 4 B g U =0,

uf ™ ug + 3 kg U+ B g u"h =0,
n+1 _|_ u31+2 +§S *q U_I}I]]: +i')s *d un"r‘l — O,

J+2
j_ﬂ +ulf g+ 8 %y u”Jr1 + pY xq UTF% =0,

31/01/2018 19 / 33
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Discrete transparent boundary conditions

Discrete transparent boundary conditions

where the sequences 5Y, PU and 55, PS are defined as
X s
ra _ -1 _ n

@) =(1+z15(2) =) n

. ) = pS

Ps(z)=(1 P (2) = -2

(2)=(1+2 P =3 2,

2=tz s ) =) 2

Plz)=(1+z )P (2) =) -

David Sanchez (Toulouse)
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Discrete transparent boundary conditions

Discrete transparent boundary conditions

Computation of the coefficients

oo
if one set V(z) = Z vk z K for all |z| > R, the coefficients vy are recovered
k=0
by the formula
rn 27 ) :
Vn V(r e’¢)e’"¢d¢>, Vn €N,

for some r > R and the approximation of these integrals are done by using
the Fast Fourier Transform.

Problem
For Schrédinger and IKdV equation, R = 1. Numerical procedure is instable

as n — +oo
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Discrete transparent boundary conditions

Discrete transparent boundary conditions

Let x=1/z
Relation between coefficients and roots
1—x
S° SY(x)=2—
() =2 s g 1
a — X
pu ps u s — (1= 9
()-+ P20+ S50 = (1 +2) 1

PRS0 + PSU) = = (2 2 i ).
PU(x)P5(x) = —1.

where

oo o0

S = 5x",  Px) =) px",
n=0 n=0
oo o

SY(x) = Sox", PY(x) = g pax".
n=0 n=0

David Sanchez (Toulouse) 31/01/2018

19 / 33



Discrete transparent boundary conditions

Discrete transparent boundary conditions

Let x=1/z

Relation between coefficients and roots

S5(x) + 5U(x) = (2 — a)(1 + x) + u(1 — x),

(14 X)PH0x) + (1 X)P(x) + 5008500 = (52 + 2u) (1-),
PL(x)3*(x) + P*(x)5¥(x) = = ((2 = a)(1 +x)° — (1 = %)),
PU(x)PA(x) = —(1 +x)2.

where

E "‘S I'l E "’S n
ZUy n _ ~u_n
Z = Z Prx
n=0
David Sanchez (Toulouse)
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Discrete transparent boundary conditions

Discrete transparent boundary conditions

Computation of the coefficients
@ Non linear system to solve for
(35, 5, % o).
@ Linear 4 x 4 system to solve for
(35, B3, 35, By). n = 1.
@ System invertible thanks to the
separation of the roots at x = 0.

@ Coefficients have the same
behaviour as in the BBM or
Schrodinger case (n=3/2).

David Sanchez (Toulouse)

'“70 500 1000 1500 2000 2500 3000
Figure: Coefficients 5; with

dx=2"18 §t=10"%a=6=1
and c =2
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Discrete transparent boundary conditions

Discrete transparent boundary conditions

Computation of the coefficients

E
S

@ As 6x — 0, the roots are no
longer separated, 0t
@ The determinant of the system ot

goes to zero,

@ Numerical error increases

500 1000 1500 2000 2500 3000
n

@ Only for spatial steps dx smaller
than in previous papers. Figure: Coefficients 57 with
dx=2"18 §t=10"2 a=5§=1

= Asymptotic expansion of the
and c =2

coefficient as dx — 0
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Consistency of the discrete TBC

Proposition

Let u be a smooth solution of the (KdV-BBM) system. For all
x € [-20x,1 + 20x], we define the Z-transform of (u(ndt, x))sen by

i(z,x) = Z M

Zn
n=0

Then, for all K C C*, s € K, one has for the left boundary conditions:

a(esét’ax) Su( s§t) ( sot 0)

+PU(e* (™, —6x) = 6x? O(6t + bx),
ﬁ(656t,0) o 5”(656t)ﬁ(656t - X)
)

+PU(e0) (e, —20x) = 6x% O(5t + 0x),

v

David Sanchez (Toulouse) 31/01/2018
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Consistency of the discrete TBC

Proposition

Let u be a smooth solution of the (KdV-BBM) system. For all
x € [-20x,1 + 20x], we define the Z-transform of (u(ndt, x))sen by

i(z,x) = Z M

Zn
n=0
Then, for all K C Ct, s € K, one has for the right boundary conditions

(e, 14 26x) — S5(e¥°H)i(e*t, 1 + dx)
+P5( s‘St)u( s&, 1) =dx O(dt + 0x),

B(e*", 1 4 6x) — $°(e%")i(e™", 1)

)

+P5 (e (e¥f,1 — 6x) = dx O(dt + 6x).

David Sanchez (Toulouse) 31/01/2018 21 /33



Stability of the discrete TBC

Proposition

Let u? with j € [-1, J+ 1] and n € N numerical solution of with the
previous discrete transparent boundary conditions. Denote &,

J
5"22

Jj=1

2
J+1 uj
+az TR (1)

There exists two hermitian matrices A*(e'®) and AY(e™) such that

VN € N, Ev—E =-TRi—R,

David Sanchez (Toulouse) 31/01/2018 22 /33



Stability of the discrete TBC

Proposition
with
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Stability of the discrete TBC

Proposition

Assume that for all 6 € [—n, 71| the Hermitian matrices A%(e'®) and
AU(e') are positive semi-definite. Then the transparent boundary
conditions are dissipative:

VN € N, En—E=-TRi—R,<0

with
R,>0, Ry>0.

This assumption are numerically satisfied

David Sanchez (Toulouse) 31/01/2018 22 /33



Numerical results

@ Numerical results
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Comparison to the solution for IKdV, a + ¢ = 2.1073
e=210"%a=c=0

e=210"% a=c=0

t 0 o
Up = Up,G

X

X
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Figure: Evolution of the reference solution for (o = ¢ = 0,& = 2.1073) and

DA



Numerical results

=0

05

Comparison to the solution for IKdV, a + ¢ = 2.1073

a=e=107",

~>

X

Up = Uo,G

David Sanchez (Toulouse

Figure: Evolution of the reference solution for (¢ = 0, = & = 1073) and
)

DA



Comparison to the solution for IKdV, o +¢ = 2.1073

a=0,e=210"c=2

0.4
03

0.2

W 0.1

X
Up = Up,wp

-0.2

-0.3

0.4 0.6 0.8
X
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Figure: Evolution of the reference solution for (¢ =2, = 0,e = 2.1073) and
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Comparison to the solution for IKdV, o +¢ = 2.1073
a:5:10’3,0:2

a=e=10"c=2

0.8
0.6
0.4
0.2
0
-0.2
04
-0.6
- -0.8
) L
Figure: Evolution of the reference solution for (¢ =2, = & = 1073) and
Up = Up,wp
David Sanchez (Toulouse)
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Numerical results

Behaviour of the relative energy with respect to dx and 6t

(a=c=0,e=21073), up = e (c=0,a=¢= 1073), up = up,G

Figure: Evolution of £p with respect to dx for various dt.

e As 6x < 5.107°, bad behaviour of Ep
ox2  6x3
@ Inversion of a matrix whose determinant is of order O (CTX + %)
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Numerical results

Behaviour of the relative energy with respect to dx and 6t

10°

(c=2,a=0,6=2103)up=vowp (c=2,a=e=10"3),up = uopwp

Figure: Evolution of £p with respect to dx for various dt.

e As 6x < 5.107°, bad behaviour of Ep
ox2  6x3
@ Inversion of a matrix whose determinant is of order O (CTX + %)
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Numerical results

Approximate discrete transparent boundary conditions

Recall that the problem of inverting the Z-transform in the transparent
boundary conditions amounts to expand into Laurent series the functions
s°(z2),s"(z), p°(z), p“(z) defined by the relation

P(r) = rf—2r3 4+ 42 p(z)r? + 2r — 1
- (,z_ss(z) rpo(2) (7 = s (2)r + p4(2).

The roots of r?> — sr + p° belongs to {r € C, |r| < 1} whereas the ones
of r> — sUr 4+ p“ belongs to {r € C, |r| > 1}.

David Sanchez (Toulouse) 31/01/2018 25 /33



Numerical results

Approximate discrete transparent boundary conditions

Let us calculate (s°, p°,s¥, p*). These functions satisfy

s° + s = 2,
Scu s u o 483
s°s" + p + p - et p(Z),
Sspu + sups — _2’
p*p = -1

We look for an asymptotic expansion of these quantities as x — 0 in the
form:

s* = Zskéxk, p° = Zpkéxk, sY = Z toxk, pl = Z qroxk.

k>0 k>0 k>0 k>0

David Sanchez (Toulouse) 31/01/2018 25 /33



Numerical results

Approximate discrete transparent boundary conditions

By inserting this expansion into the equation and identifying O(dx") terms
with (n € N), we obtain a non linear system at 0" order:

S0+ to = 2,
soto+po+q0 = 0O,
soqo + topo = -2,
Podo = -L

The solution writes (s, po, to, 90) = (0, —1,2,1).
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Numerical results

Approximate discrete transparent boundary conditions

Next, we identify O(dx") terms with n > 1. One finds the family of linear
systems

Sn 1 0 1 0 10 1 O
Pn| _ lto 1 s 1| |21 0 1
A iy = F, where A= o topo os| |12 -1 ol
An 0 g 0 po 01 0 -1
1
. : . . -1
where 0 is a simple eigenvalue associated to v = 1
-1

David Sanchez (Toulouse) 31/01/2018 25 /33



Numerical results

Approximate discrete transparent boundary conditions

If the compatibility condition

0 1 0
1 0 1

det | Fn, N =0
1 0 -1

is fulfilled, then one can compute U, = (sp, P, tn, qn) "

David Sanchez (Toulouse) 31/01/2018
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Numerical results

Approximate discrete transparent boundary conditions

Let A1 the root of A} + 3. p(z) = 0 whose real part is negative. We get:

A2 p
s° = Adx + ?16x2 3ot ——6x3 4 0(6x%),

A2 p
s“:2—)\15x—?15x2—3 5t 6x3 4 0(6x*),

2

p*=—1—A1dx — %5% 32§t5x + 0(6xY),

Y=1-X 5x+>\%5x2+ péx + 0(0x%).
Pr= i T ATy 3e0t
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Approximate discrete transparent boundary conditions

We now need to invert the Z transform of
2 M(s(2)) = — ()" p(2)M/3. Note that

p(z)k/3 _ (1 B Z_l)k/3

= m, V]z| >1, Vkel.

As a consequence, p(z)*/3 can be expanded into Laurent series explicitly:
indeed, (1 —2z71)7 and (14 z71)” expand as

o ()

(]. — Z_]')’Y = Z _app s 0‘?—21 = ——’7 _ (p _ l)OZgY), Qo = 1,
z p
p=0
0 5(7) o -1
R I
p=0
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Numerical results

Numerical results- (& = ¢ = 0,6 = 1073), up = wp ¢

10° 100
10™ 10"
6o 6o o0
107 F 102k
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5 10°F 5107
]
10% ¢ 10% B\
T & % T
—o—dt=10 o —e—ot=10
N 210~ 910t
o B L I o B i
—8—0t=210" —8—6t=210"*
—o—0t=10" —6o—6t=10"*
10° . . . . " . 10% . . . . : ,
107 10° 10° 10 10° 102 10" 107 10° 10° 10 10° 107 10?
oz bz
standard coefficients asymptotic coefficients

Figure: Evolution of Ep with respect to dx for various §t.
The bad behaviour of Ep is clearly limited when dx, §x3 /8t are very small.
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Numerical results

Numerical results - Long time simulations
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Figure: Evolution of the convolution coefficients.

@ Asymptotic coefficients useful for long time simulations
o Standard coefficient do not have the good decay (n~3/?)
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Numerical results
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Figure: Evolution of the convolution coefficients.
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Numerical results - Long time simulations
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Figure: Evolution of the solution with standard and asymptotic convolution



Numerical results

Numerical results - Long time simulations

—&—standard coefficients
—— asymptotic coefficients

0 200 400 600 800 1000
t

Figure: Evolution of the discrete energy &, of the solution with standard and
asymptotic convolution coefficients.
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Conclusion and perspectives

Conclusion

@ Continuous and discrete transparent boundary conditions for the
linear mixed KdV-BBM equation

Second order in time and space scheme
Preserves spatial mean ad energy
Stability for the continuous transparent boundary conditions

Sufficient condition in the discrete case for the stability

Consistence between the discrete and continuous transparent
boundary conditions
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Conclusion and perspectives

Conclusion

@ New strategy to compute the inverse Z-transform, based on an
asymptotic expansion as x = 1/z — 0

@ Method efficient and stable except for small dx
o Alternative strategy based on an asymptotic expansion as dx — 0.

o Coefficients have good behaviour for long time simulations
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Conclusion and perspectives

Perspectives

@ Non linear equations
Equations with variable coefficients
Fixed point method
@ Design of discret transparent boundary conditions for more general
models of water waves (KP, Zakharov-Kuznetsov,
Serre-Green-Naghdi)
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Conclusion and perspectives

Thanks for your attention
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