Discrete transparent boundary conditions for the mixed KdV-BBM equation

David Sanchez

Joint work with Pascal Noble and Christophe Besse

Institut de Mathématiques de Toulouse
NABUCO

Talk's content

(1) Introduction
(2) Exact transparent boundary conditions
(3) Discrete transparent boundary conditions

4 Numerical results
(5) Conclusion and perspectives
(1) Introduction
(2) Exact transparent boundary conditions
(3) Discrete transparent boundary conditions

4 Numerical results
(5) Conclusion and perspectives

Context

Water waves models

- Dispersive regularization of hyperbolic conservation laws
- Dispersive shock waves: oscillatory structure, the width of the socillatory region grows with time.

Numerical simulations are difficult

- Rankine-Hugoniot jump conditions not satisfied
- Spectral techniques:
+ suitable to describe oscillatory phenomena,
- periodic boundary conditions,
- very large domains for long time simulations,
- dynamic of dispersive equations very different in periodic domain and in the whole space.

Context

Water waves models

- Dispersive regularization of hyperbolic conservation laws
- Dispersive shock waves: oscillatory structure, the width of the socillatory region grows with time.

Transparent boundary conditions

- adapted to simulations for the whole space domain,
- The solution calculated in the computational domain is an approximation of the exact solution restricted to the computational domain.

Equations

Korteweg de Vries equation

$$
\partial_{t} u+\partial_{x} u+\frac{3 \eta}{2} u \partial_{x} u+\frac{\mu}{6} \partial_{x x x} u=0, \quad \forall t>0, \quad \forall x \in \mathbb{R}
$$

As η and $\mu \rightarrow 0$ we have

$$
\partial_{x} u=-\partial_{t} u+O(\eta+\mu)
$$

One can trade a spatial derivative for a time derivative KdV -BBM equation

$$
\partial_{t}\left(u-\alpha \partial_{x x} u\right)+\partial_{x} u+\frac{3 \eta}{2} u \partial_{x} u+\left(\frac{\mu}{6}-\alpha\right) \partial_{x x x} u=0, \quad \forall 0<\alpha \leq \frac{\mu}{6}
$$

Equations

KdV-BBM equation

$$
\partial_{t}\left(u-\alpha \partial_{x x} u\right)+\partial_{x} u+\frac{3 \eta}{2} u \partial_{x} u+\left(\frac{\mu}{6}-\alpha\right) \partial_{x x x} u=0, \quad \forall 0<\alpha \leq \frac{\mu}{6} .
$$

When $\alpha=\mu / 6$, we have the
Benjamin-Bona-Mahoney equation

$$
\partial_{t}\left(u-\alpha \partial_{x x} u\right)+\partial_{x} u+\frac{3 \eta}{2} u \partial_{x} u=0, \quad \forall t>0, \quad \forall x \in \mathbb{R}
$$

Equations

Korteweg de Vries equation

$$
\partial_{t} u+\partial_{x} u+\frac{3 \eta}{2} u \partial_{x} u+\frac{\mu}{6} \partial_{x x x} u=0, \quad \forall t>0, \quad \forall x \in \mathbb{R}
$$

KdV-BBM equation

$$
\partial_{t}\left(u-\alpha \partial_{x x} u\right)+\partial_{x} u+\frac{3 \eta}{2} u \partial_{x} u+\left(\frac{\mu}{6}-\alpha\right) \partial_{x x x} u=0, \quad \forall 0<\alpha \leq \frac{\mu}{6} .
$$

- solitary waves and cnoidal (periodic) waves solutions for these equations
- interaction between these waves
- role in the description of the solutions for asymptotically large time.

Equations

We focus on KdV-BBM linearized about a constant state $u=U$. This yields
linearized KdV-BBM equation

$$
\partial_{t}\left(u-\alpha \partial_{x x} u\right)+c \partial_{x} u+\varepsilon \partial_{x x x} u=0, \quad \forall t>0, \quad \forall x \in \mathbb{R},
$$

- dispersion parameters: α, ε
- velocity: $c=\left(1+3 \eta \frac{U}{2}\right)$

State of the art

- Schrödinger equation: discrete artifical boundary conditions:
- Arnorld, Ehrhardt, Sofronov (2003),
- Arnorld, Ehrhardt, Schulte, Sofronov (2012),
- Ehrhardt $(2001,2008)$,
- Ehrhardt, Arnold (2001)
- Pure BBM case, $\varepsilon=0$: continuous and discrete transparent boundary conditions, Besse, Mésognon-Giraud, Noble (2016)
- Pure KdV case, $\alpha=0$:
- continuous TBC, Zheng (2006), Zheng, Wen, Han (2008)
- exact transparent and discrete boundary conditions, Besse, Ehrhardt, Lacroix-Violet (2016)

State of the art

In Besse, Ehrhardt, Lacroix-Violet (2016)

- DTBC derived for an upwind (first order) and a centered (second order) spatial discretization, time discretization based on the Crank-Nicolson scheme.
- DTBC perfectly adapated to the scheme, retain the stability property of the discretization method
- no reflexion when compared to the discrete whole space solution.
- In the case of the linearized KdV equation
- Not explicit
- Requires the numerical inversion of the \mathcal{Z}-transformation (discrete analogue of the inverse Laplace transform)
- Numerical error and instabilities for large time simulations, Arnorld, Ehrhardt, Sofronov (2003), Zisowsky (2003)

(1) Introduction

(2) Exact transparent boundary conditions
(3) Discrete transparent boundary conditions

4 Numerical results
(5) Conclusion and perspectives

Initial boundary value problem

$$
\begin{array}{r}
\partial_{t}\left(u-\alpha \partial_{x x} u\right)+c \partial_{x} u+\varepsilon \partial_{x x x} u=0, \quad \forall t>0, \quad \forall x \in \mathbb{R}, \\
u(0, x)=u_{0}(x), \quad \forall x \in \mathbb{R}, \\
\lim _{x \rightarrow \infty} u(t, x)=\lim _{x \rightarrow-\infty} u(t, x)=0,
\end{array}
$$

where

- u_{0} is compactly supported in a finite computational interval $\left[x_{\ell}, x_{r}\right]$ with $x_{\ell}<x_{r}$,
- $c \in \mathbb{R}$ and $\alpha, \varepsilon>0$ are respectively a velocity and two dispersion parameters.

Continuous artificial boundary condition problem

Outside $\left[x_{\ell}, x_{r}\right]$, we rewrite the equation as

$$
\partial_{x}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\varepsilon^{-1} \partial_{t} & -\varepsilon^{-1} c & \alpha \varepsilon^{-1} \partial_{t}
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) .
$$

We use the Laplace transform with respect to time. Then for all $s \in \mathbb{C}$ with $\Re(s)>0$:

$$
\partial_{x}\left(\begin{array}{c}
\hat{u} \\
\hat{v} \\
\hat{w}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\varepsilon^{-1} s & -\varepsilon^{-1} c & \alpha \varepsilon^{-1} s
\end{array}\right)\left(\begin{array}{c}
\hat{u} \\
\hat{v} \\
\hat{w}
\end{array}\right):=\mathcal{A}_{\alpha, \varepsilon}(s, c)\left(\begin{array}{c}
\hat{u} \\
\hat{v} \\
\hat{w}
\end{array}\right) .
$$

Continuous artificial boundary condition problem

The general solutions of this system of ODE are given explicitly by
$\left(\begin{array}{c}\hat{u} \\ \hat{v} \\ \hat{w}\end{array}\right)=e^{\lambda_{1}(s) \times} \mathcal{V}_{1}(s)+e^{\lambda_{2}(s) \times} \mathcal{V}_{2}(s)+e^{\lambda_{3}(s) \times} \mathcal{V}_{3}(s), \quad x<x_{\ell}, \quad x>x_{r}$,
where $\lambda_{k}(s), k=1,2,3$ are the roots of

$$
P(s, c, \alpha, \varepsilon, \lambda)=s+c \lambda-\alpha s \lambda^{2}+\varepsilon \lambda^{3}=0
$$

and $\mathcal{V}_{k}=\left(1, \lambda_{k}, \lambda_{k}^{2}\right)^{T}$ are the right eigenvectors of the matrix $\mathcal{A}_{\alpha, \varepsilon}(s, c)$ associated to the eigenvalue λ_{k}.

Continuous artificial boundary condition problem

Proposition

For all $\varepsilon>0$ and for all $\alpha \geq 0$, the roots $\lambda_{k}(s), k=1,2,3$ possess the following separation property:

$$
\Re\left(\lambda_{1}(s)\right)<0, \quad \Re\left(\lambda_{2}(s)\right)>0, \quad \Re\left(\lambda_{3}(s)\right)>0, \quad \forall \Re(s)>0 .
$$

Sketch of the proof:

- The property has been proved if $\alpha=0$ in Besse, Ehrhardt, Lacroix-Violet (2016).
- Continuity argument for the number of roots with a positive real part.

Continuous artificial boundary condition problem

Now, we search for solutions $(\hat{u}, \hat{v}, \hat{w})^{T}$ such that $\lim _{x \rightarrow \infty} \hat{u}(s, x)=0$. It is satisfied provided that we impose the condition

$$
\mathcal{V}_{1}(s) \wedge\left(\begin{array}{c}
\hat{u}\left(s, x_{r}\right) \\
\hat{v}\left(s, x_{r}\right) \\
\hat{w}\left(s, x_{r}\right)
\end{array}\right)=0
$$

which in turn provides the following two boundary conditions

$$
\partial_{x} \hat{u}\left(s, x_{r}\right)=\lambda_{1}(s) \hat{u}\left(s, x_{r}\right), \quad \partial_{x x} \hat{u}\left(s, x_{r}\right)=\lambda_{1}^{2}(s) \hat{u}\left(s, x_{r}\right) .
$$

Continuous artificial boundary condition problem

A similar argument to obtain solutions $(\hat{u}, \hat{v}, \hat{w})^{T}$ such that $\lim _{x \rightarrow-\infty} \hat{u}(s, x)=0$. We therefore have to impose the condition

$$
\mathcal{V}_{2}(s) \wedge \mathcal{V}_{3}(s) \cdot\left(\begin{array}{c}
\hat{u}\left(s, x_{\ell}\right) \\
\hat{v}\left(s, x_{\ell}\right) \\
\hat{w}\left(x, x_{\ell}\right)
\end{array}\right)=0
$$

which gives the following boundary condition.

$$
\partial_{x x} \hat{u}\left(s, x_{\ell}\right)-\left(\lambda_{2}(s)+\lambda_{3}(s)\right) \partial_{x} \hat{u}\left(s, x_{\ell}\right)+\lambda_{2} \lambda_{3} \hat{u}\left(s, x_{\ell}\right)=0 .
$$

Continuous artificial boundary condition problem

A similar argument to obtain solutions $(\hat{u}, \hat{v}, \hat{w})^{T}$ such that $\lim _{x \rightarrow-\infty} \hat{u}(s, x)=0$. We therefore have to impose the condition

$$
\mathcal{V}_{2}(s) \wedge \mathcal{V}_{3}(s) \cdot\left(\begin{array}{c}
\hat{u}\left(s, x_{\ell}\right) \\
\hat{v}\left(s, x_{\ell}\right) \\
\hat{w}\left(x, x_{\ell}\right)
\end{array}\right)=0
$$

which gives the following boundary condition.

$$
\begin{aligned}
& \partial_{x x} \hat{u}\left(s, x_{\ell}\right)+\left(\lambda_{1}(s)-\frac{\alpha s}{\varepsilon}\right) \partial_{x} \hat{u}\left(s, x_{\ell}\right) \\
& \quad+\left(\lambda_{1}(s)^{2}-\frac{\alpha s}{\varepsilon} \lambda_{1}(s)+\frac{c}{\varepsilon}\right) \hat{u}\left(s, x_{\ell}\right)=0 .
\end{aligned}
$$

Continuous artificial boundary condition problem

Written in time variables, the boundary conditions read

$$
\begin{aligned}
& \partial_{x} u\left(t, x_{r}\right)=\mathcal{L}^{-1}\left(\lambda_{1}(s)\right) * u\left(t, x_{r}\right) \\
& \partial_{x x} u\left(t, x_{r}\right)=\mathcal{L}^{-1}\left(\lambda_{1}^{2}(s)\right) * u\left(t, x_{r}\right) \\
& \partial_{x x} u\left(t, x_{\ell}\right)+\mathcal{L}^{-1}\left(\lambda_{1}(s)-\frac{\alpha s}{\varepsilon}\right) * \partial_{x} u\left(t, x_{\ell}\right) \\
& +\mathcal{L}^{-1}\left(\lambda_{1}(s)^{2}-\frac{\alpha s}{\varepsilon} \lambda_{1}(s)\right) * u\left(t, x_{\ell}\right)+\frac{c}{\varepsilon} u\left(t, x_{\ell}\right)=0
\end{aligned}
$$

Continuous artificial boundary condition problem

Proposition

Assume that

$$
\frac{c}{2}+\varepsilon\left(\Re\left(\lambda_{1}^{2}(i \xi)\right)-\frac{\left|\lambda_{1}(i \xi)\right|^{2}}{2}\right)-\alpha \Re\left(i \xi \lambda_{1}(i \xi)\right) \geq 0, \quad \forall \xi \in \mathbb{R}
$$

Then the problem

$$
\begin{cases}\partial_{t}\left(u-\alpha \partial_{x x} u\right)+c \partial_{x} u+\varepsilon \partial_{x x x} u=0, & (t, x) \in \mathbb{R}_{*}^{+} \times\left(x_{\ell}, x_{r}\right), \\ u(0, x)=u_{0}(x), & x \in\left(x_{\ell}, x_{r}\right),\end{cases}
$$

with the previous boundary conditions is H^{1}-stable. For any $t>0$,

$$
\int_{x_{\ell}}^{x_{r}} u^{2}(t, x)+\alpha\left(\partial_{x} u\right)^{2}(t, x) d x \leq \int_{x_{\ell}}^{x_{r}} u_{0}^{2}(x)+\alpha\left(\partial_{x} u_{0}\right)^{2} d x
$$

Continuous artificial boundary condition problem

Sketch of the proof:

- The root $\lambda_{1}(s)$ is defined for all $s \in \mathbb{C}$ such that $\Re(s)>0$. We define $\lambda_{1}(i \xi)$ with $\xi \in \mathbb{R}$ as

$$
\lambda_{1}(i \xi)=\lim _{\eta \rightarrow 0^{+}} \lambda_{1}(\eta+i \xi)
$$

- $\mathcal{E}(t)=\mathcal{E}(0)+J\left(x_{\ell}\right)-J\left(x_{r}\right)$ with

$$
J(x)=\int_{0}^{t}\left(c u^{2}+2 \varepsilon u \partial_{x x}^{2} u-\varepsilon\left(\partial_{x} u\right)^{2}-2 \alpha u \partial_{x t}^{2} u\right)(t, x) d t
$$

- We let $U=u\left(t, x_{\ell}\right) \mathbf{1}_{[0, T]}$ and $V=\partial_{x} u\left(t, x_{\ell}\right) \mathbf{1}_{[0, T]}$ on the left hand side, $U=u\left(t, x_{r}\right) \mathbf{1}_{[0, T]}$ on the right hand side to rewrite the integrals in the form $\int_{0}^{+\infty} \ldots d t$ and use the boundary conditions to get the result.

Continuous artificial boundary condition problem

Proposition

The stability condition given in Prop. 2 is always fulfilled:

$$
\forall \xi \in \mathbb{R}, \quad \frac{c}{2}+\varepsilon\left(\Re\left(\lambda_{1}^{2}(i \xi)\right)-\frac{\left|\lambda_{1}(i \xi)\right|^{2}}{2}\right)-\alpha \Re\left(i \xi \lambda_{1}(i \xi)\right) \geq 0
$$

Sketch of the proof: study of all the cases obtained by writing $\lambda_{1}(i \xi)=a+i b$.

(1) Introduction

(2) Exact transparent boundary conditions
(3) Discrete transparent boundary conditions

4 Numerical results

(5) Conclusion and perspectives

Ideas

- Not possible to compute explicitly the inverse Laplace transform of $\lambda_{k}, k=1,2,3$,
\Rightarrow no closed form of the boundary conditions.
\Rightarrow difficult to discretize the transparent boundary conditions
- Construction of the transparent boundary conditions on the fully discrete scheme.
- \mathcal{Z} transform instead of the Laplace transform
- As in continuous case, explicit inverse \mathcal{Z} transform is not available. \Rightarrow heavy numerical cost (see Besse, Ehrhardt, Lacroix-Violet (2016))
- Alternative approach to construct "explicit" coefficients of discrete kernels.

Numerical scheme for linear KdV-BBM equation

$$
\begin{aligned}
u_{j}^{n+1}-u_{j}^{n} & -\lambda_{B}\left(u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}-u_{j+1}^{n}+2 u_{j}^{n}-u_{j-1}^{n}\right) \\
& +\frac{\lambda_{H}}{4}\left(u_{j+1}^{n+1}-u_{j-1}^{n+1}\right)+\frac{\lambda_{H}}{4}\left(u_{j+1}^{n}-u_{j-1}^{n}\right) \\
& +\frac{\lambda_{D}}{4}\left(u_{j+2}^{n+1}-2 u_{j+1}^{n+1}+2 u_{j-1}^{n+1}-u_{j-2}^{n+1}\right) \\
& +\frac{\lambda_{D}}{4}\left(u_{j+2}^{n}-2 u_{j+1}^{n}+2 u_{j-1}^{n}-u_{j-2}^{n}\right)=0, \forall j=0, \ldots, J
\end{aligned}
$$

with

$$
\lambda_{H}=\frac{c \delta t}{\delta x}, \quad \lambda_{D}=\frac{\varepsilon \delta t}{\delta x^{3}}, \quad \lambda_{B}=\frac{\alpha}{\delta x^{2}}
$$

δt the time step, δx the space step, $J=\left(x_{r}-x_{\ell}\right) / \delta x, u_{j}^{n}$ the approximation of the exact solution $u(t, x)$ at points $j \delta x$ and instants $n \delta t$

\mathcal{Z}-transform of the equation

$$
\hat{u}(z)=\mathcal{Z}\left\{\left(u^{n}\right)_{n}\right\}(z)=\sum_{k=0}^{\infty} u^{k} z^{-k}, \quad|z|>R>0,
$$

where R is the convergence radius of the Laurent series and $z \in \mathbb{C}$. Denoting $\hat{u}_{j}=\hat{u}_{j}(z)$ the \mathcal{Z}-transform of the sequence $\left(u_{j}^{(n)}\right)_{n \in \mathbb{N}}$, we obtain the homogeneous fourth order difference equation

$$
\begin{aligned}
\hat{u}_{j+2} & -\left(2-\frac{\lambda_{H}}{\lambda_{D}}+\frac{4 \lambda_{B}}{\lambda_{D}} \frac{z-1}{z+1}\right) \hat{u}_{j+1} \\
& +\left(\frac{4}{\lambda_{D}}+\frac{8 \lambda_{B}}{\lambda_{D}}\right) \frac{z-1}{z+1} \hat{u}_{j} \\
& +\left(2-\frac{\lambda_{H}}{\lambda_{D}}-\frac{4 \lambda_{B}}{\lambda_{D}} \frac{z-1}{z+1}\right) \hat{u}_{j-1}-\hat{u}_{j-2}=0 .
\end{aligned}
$$

\mathcal{Z}-transform of the equation

$$
\hat{u}(z)=\mathcal{Z}\left\{\left(u^{n}\right)_{n}\right\}(z)=\sum_{k=0}^{\infty} u^{k} z^{-k}, \quad|z|>R>0,
$$

where R is the convergence radius of the Laurent series and $z \in \mathbb{C}$. Associated characteristic polynomial:
$P(r)=r^{4}-(2-a+\mu p(z)) r^{3}+\left(\frac{4 a}{\lambda_{H}}+2 \mu\right) p(z) r^{2}+(2-a-\mu p(z)) r-1=0$.
with

$$
a=\frac{\lambda_{H}}{\lambda_{D}}, \quad \mu=\frac{4 \lambda_{B}}{\lambda_{D}}, \quad p(z)=\frac{z-1}{z+1}=\frac{1-z^{-1}}{1+z^{-1}} .
$$

\mathcal{Z}-transform of the equation

Proposition

Assume $\varepsilon>0, \alpha \geq 0, \delta x, \delta t>0$ and $c \in \mathbb{R}$. Then, the roots of P are well separated according to

$$
\left|r_{1}(z)\right|<1, \quad\left|r_{2}(z)\right|<1, \quad\left|r_{3}(z)\right|>1, \quad\left|r_{4}(z)\right|>1
$$

which defines the discrete separation properties. As a consequence, there is a smooth parameterization of the "stable" (respectively "unstable") subspace $\mathbb{E}^{s}(z)\left(r e s p \mathbb{E}^{u}(z)\right)$ of solutions to (8) which decrease to 0 as $j \rightarrow+\infty$ (respectively $j \rightarrow-\infty$) for $|z|>R$ with R large enough.

Discrete transparent boundary conditions

According to this proposition, we set

$$
\begin{aligned}
& S^{s}(z)=r_{1}(z)+r_{2}(z), P^{s}(z)=r_{1}(z) r_{2}(z), \\
& S^{u}(z)=r_{3}(z)+r_{4}(z), P^{u}(z)=r_{3}(z) r_{4}(z)
\end{aligned}
$$

and the characteristic polynomial P admits the factorization

$$
P(r)=\left(r^{2}-S^{u}(z) r+P^{u}(z)\right)\left(r^{2}-S^{s}(z) r+P^{s}(z)\right)
$$

Discrete transparent boundary conditions

The discrete transparent boundary conditions are written as follows. On the left boundary, one must have

$$
\left(\hat{u}_{-2}, \hat{u}_{-1}, \hat{u}_{0}, \hat{u}_{1}\right) \in \mathbb{E}^{u}(z)
$$

which is also equivalent to the following boundary conditions

$$
\begin{gathered}
\hat{u}_{1}-S^{u}(z) \hat{u}_{0}+P^{u}(z) u_{-1}=0, \\
\hat{u}_{0}-S^{u}(z) \hat{u}_{-1}+P^{u}(z) u_{-2}=0 .
\end{gathered}
$$

Discrete transparent boundary conditions

The discrete transparent boundary conditions are written as follows. On the other hand, one must have on the right boundary

$$
\left(\hat{u}_{J-1}, \hat{u}_{J}, \hat{u}_{J+1}, \hat{u}_{J+2}\right) \in \mathbb{E}^{s}(z)
$$

which is also written as

$$
\begin{aligned}
& \hat{u}_{J+2}-S^{s}(z) \hat{u}_{J+1}+P^{s}(z) \hat{u}_{J}=0, \\
& \hat{u}_{J+1}-S^{s}(z) \hat{u}_{J}+P^{s}(z) \hat{u}_{J-1}=0 .
\end{aligned}
$$

Discrete transparent boundary conditions

The coefficients of P admits a singularity at $z=-1$
\Rightarrow bad behavior of the coefficients in the expansion of $S^{u}, P^{u}, S^{s}, P^{s}$.
\Rightarrow Alternative boundary conditions by multiplying $1+z^{-1}$.
Inverting the \mathcal{Z}-transform, one finds that the left and right boundary conditions are written as:

$$
\begin{gathered}
u_{1}^{n+1}+u_{1}^{n}+\tilde{s}^{u} *_{d} u_{0}^{n+1}+\tilde{p}^{u} *_{d} u_{-1}^{n+1}=0 \\
u_{0}^{n+1}+u_{0}^{n}+\tilde{s}^{u} *_{d} u_{-1}^{n+1}+\tilde{p}^{u} *_{d} u_{-2}^{n+1}=0 \\
u_{J+2}^{n+1}+u_{J+2}^{n}+\tilde{s}^{s} *_{d} u_{J+1}^{n+1}+\tilde{p}^{s} *_{d} u_{J}^{n+1}=0 \\
u_{J+1}^{n+1}+u_{J+1}^{n}+\tilde{s}^{u} *_{d} u_{J}^{n+1}+\tilde{p}^{u} *_{d} u_{J-1}^{n+1}=0,
\end{gathered}
$$

Discrete transparent boundary conditions

where the sequences $\tilde{S}^{u}, \tilde{P}^{u}$ and $\tilde{S}^{s}, \tilde{P}^{s}$ are defined as

$$
\begin{aligned}
& \tilde{S}^{s}(z)=\left(1+z^{-1}\right) S^{s}(z)=\sum_{n=0}^{\infty} \frac{\tilde{s}_{n}^{s}}{z^{n}}, \\
& \tilde{P}^{s}(z)=\left(1+z^{-1}\right) P^{s}(z)=\sum_{n=0}^{\infty} \frac{\tilde{p}_{n}^{s}}{z^{n}}, \\
& \tilde{S}^{u}(z)=\left(1+z^{-1}\right) S^{u}(z)=\sum_{n=0}^{\infty} \frac{\tilde{s}_{n}^{u}}{z^{n}}, \\
& \tilde{P}^{u}(z)=\left(1+z^{-1}\right) P^{u}(z)=\sum_{n=0}^{\infty} \frac{\tilde{p}_{n}^{u}}{z^{n}} .
\end{aligned}
$$

Discrete transparent boundary conditions

Computation of the coefficients

if one set $V(z)=\sum_{k=0}^{\infty} v_{k} z^{-k}$ for all $|z|>R$, the coefficients v_{k} are recovered by the formula

$$
v_{n}=\frac{r^{n}}{2 \pi} \int_{0}^{2 \pi} V\left(r e^{i \phi}\right) e^{i n \phi} d \phi, \quad \forall n \in \mathbb{N}
$$

for some $r>R$ and the approximation of these integrals are done by using the Fast Fourier Transform.

Problem

For Schrödinger and IKdV equation, $R=1$. Numerical procedure is instable as $n \rightarrow+\infty$

Discrete transparent boundary conditions

Let $x=1 / z$

Relation between coefficients and roots

$$
\begin{aligned}
& S^{s}(x)+S^{u}(x)=2-a+\mu \frac{1-x}{1+x} \\
& P^{u}(x)+P^{s}(x)+S^{u}(x) S^{s}(x)=\left(\frac{4 a}{\lambda_{H}}+2 \mu\right) \frac{1-x}{1+x} \\
& P^{u}(x) S^{s}(x)+P^{s}(x) S^{u}(x)=-\left(2-a-\mu \frac{1-x}{1+x}\right), \\
& P^{u}(x) P^{s}(x)=-1
\end{aligned}
$$

where

$$
\begin{array}{ll}
\tilde{S}^{s}(x)=\sum_{n=0}^{\infty} \tilde{s}_{n}^{s} x^{n}, & \tilde{P}^{s}(x)=\sum_{n=0}^{\infty} \tilde{p}_{n}^{s} x^{n}, \\
\tilde{S}^{u}(x)=\sum_{n=0}^{\infty} \tilde{s}_{n}^{u} x^{n}, & \tilde{P}^{u}(x)=\sum_{n \mp 0}^{\infty} \tilde{p}_{n}^{u} x^{n} .
\end{array}
$$

Discrete transparent boundary conditions

Let $x=1 / z$

Relation between coefficients and roots

$$
\begin{aligned}
& \tilde{S}^{s}(x)+\tilde{S}^{u}(x)=(2-a)(1+x)+\mu(1-x), \\
& (1+x) \tilde{P}^{u}(x)+(1+x) \tilde{P}^{s}(x)+\tilde{S}^{u}(x) \tilde{S}^{s}(x)=\left(\frac{4 a}{\lambda_{H}}+2 \mu\right)\left(1-x^{2}\right), \\
& \tilde{P}^{u}(x) \tilde{S}^{s}(x)+\tilde{P}^{s}(x) \tilde{S}^{u}(x)=-\left((2-a)(1+x)^{2}-\mu\left(1-x^{2}\right)\right), \\
& \tilde{P}^{u}(x) \tilde{P}^{s}(x)=-(1+x)^{2} .
\end{aligned}
$$

where

$$
\begin{array}{ll}
\tilde{S}^{s}(x)=\sum_{n=0}^{\infty} \tilde{s}_{n}^{s} x^{n}, & \tilde{P}^{s}(x)=\sum_{n=0}^{\infty} \tilde{p}_{n}^{s} x^{n}, \\
\tilde{S}^{u}(x)=\sum_{n=0}^{\infty} \tilde{s}_{n}^{u} x^{n}, & \tilde{P}^{u}(x)=\sum_{n=0}^{\infty} \tilde{p}_{n}^{u} x^{n} .
\end{array}
$$

Discrete transparent boundary conditions

Computation of the coefficients

- Non linear system to solve for $\left(\tilde{s}_{0}^{s}, \tilde{p}_{0}^{s}, \tilde{s}_{0}^{U}, \tilde{p}_{0}^{u}\right)$,
- Linear 4×4 system to solve for $\left(\tilde{s}_{n}^{s}, \tilde{p}_{n}^{s}, \tilde{s}_{n}^{u}, \tilde{p}_{n}^{u}\right), n \geq 1$.
- System invertible thanks to the separation of the roots at $x=0$.
- Coefficients have the same behaviour as in the BBM or Schrödinger case ($n^{-3 / 2}$).

Figure: Coefficients \tilde{s}_{n}^{s} with $\delta x=2^{-18}, \delta t=10^{-4}, \alpha=\delta=1$ and $c=2$

Discrete transparent boundary conditions

Computation of the coefficients

- As $\delta x \rightarrow 0$, the roots are no longer separated,
- The determinant of the system goes to zero,
- Numerical error increases
- Only for spatial steps δx smaller than in previous papers.
\Rightarrow Asymptotic expansion of the coefficient as $\delta x \rightarrow 0$

Figure: Coefficients \tilde{s}_{n}^{s} with $\delta x=2^{-18}, \delta t=10^{-2}, \alpha=\delta=1$ and $c=2$

Consistency of the discrete TBC

Proposition

Let u be a smooth solution of the (KdV-BBM) system. For all $x \in[-2 \delta x, 1+2 \delta x]$, we define the \mathcal{Z}-transform of $(u(n \delta t, x))_{n \in \mathbb{N}}$ by

$$
\hat{u}(z, x)=\sum_{n=0}^{\infty} \frac{u(n \delta t, x)}{z^{n}}
$$

Then, for all $K \subset \mathbb{C}^{+}$, $s \in K$, one has for the left boundary conditions:

$$
\begin{aligned}
& \hat{u}\left(e^{s \delta t}, \delta x\right)-S^{u}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t}, 0\right) \\
&+P^{u}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t},-\delta x\right)=\delta x^{2} O(\delta t+\delta x), \\
& \hat{u}\left(e^{s \delta t}, 0\right)-S^{u}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t},-\delta x\right) \\
&+P^{u}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t},-2 \delta x\right)=\delta x^{2} O(\delta t+\delta x),
\end{aligned}
$$

Consistency of the discrete TBC

Proposition

Let u be a smooth solution of the (KdV-BBM) system. For all $x \in[-2 \delta x, 1+2 \delta x]$, we define the \mathcal{Z}-transform of $(u(n \delta t, x))_{n \in \mathbb{N}}$ by

$$
\hat{u}(z, x)=\sum_{n=0}^{\infty} \frac{u(n \delta t, x)}{z^{n}}
$$

Then, for all $K \subset \mathbb{C}^{+}$, $s \in K$, one has for the right boundary conditions

$$
\begin{aligned}
& \hat{u}\left(e^{s \delta t}, 1+2 \delta x\right)-S^{s}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t}, 1+\delta x\right) \\
&+P^{s}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t}, 1\right)=\delta x O(\delta t+\delta x), \\
& \hat{u}\left(e^{s \delta t}, 1+\delta x\right)-S^{s}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t}, 1\right) \\
&+P^{s}\left(e^{s \delta t}\right) \hat{u}\left(e^{s \delta t}, 1-\delta x\right)=\delta x O(\delta t+\delta x) .
\end{aligned}
$$

Stability of the discrete TBC

Proposition

Let u_{j}^{n} with $j \in[-1, J+1]$ and $n \in \mathbb{N}$ numerical solution of with the previous discrete transparent boundary conditions. Denote \mathcal{E}_{n}

$$
\begin{equation*}
\mathcal{E}_{n}=\sum_{j=1}^{J} \frac{\left(u_{j}^{n}\right)^{2}}{2}+\alpha \sum_{j=0}^{J} \frac{\left(u_{j+1}^{n}-u_{j}^{n}\right)^{2}}{2 \delta x^{2}} . \tag{1}
\end{equation*}
$$

There exists two hermitian matrices $\mathcal{A}^{s}\left(e^{i \theta}\right)$ and $\mathcal{A}^{u}\left(e^{i \theta}\right)$ such that

$$
\forall N \in \mathbb{N}, \quad \mathcal{E}_{N}-\mathcal{E}_{0}=-\mathcal{R}_{\ell}-\mathcal{R}_{r}
$$

Stability of the discrete TBC

Proposition

with

$$
\begin{aligned}
& \mathcal{R}_{r}=\frac{\lambda_{D}}{8 \pi} \int_{-\pi}^{\pi}\left\langle\binom{\widehat{u_{J-1}}\left(e^{i \theta}\right)}{\widehat{u_{J}}\left(e^{i \theta}\right)} ; \mathcal{A}^{s}\left(e^{i \theta}\right)\binom{\widehat{u_{J-1}}\left(e^{i \theta}\right)}{\widehat{u_{J}}\left(e^{i \theta}\right)}\right\rangle d \theta, \\
& \mathcal{R}_{\ell}=\frac{\lambda_{D}}{8 \pi} \int_{-\pi}^{\pi}\left\langle\binom{\widehat{u_{-1}}\left(e^{i \theta}\right)}{\widehat{u_{0}}\left(e^{i \theta}\right)} ; \mathcal{A}^{u}\left(e^{i \theta}\right)\binom{\widehat{u_{-1}}\left(e^{i \theta}\right)}{\widehat{u_{0}}\left(e^{i \theta}\right)}\right\rangle d \theta .
\end{aligned}
$$

Stability of the discrete TBC

Proposition

Assume that for all $\theta \in[-\pi, \pi]$ the Hermitian matrices $\mathcal{A}^{s}\left(e^{i \theta}\right)$ and $\mathcal{A}^{u}\left(e^{i \theta}\right)$ are positive semi-definite. Then the transparent boundary conditions are dissipative:

$$
\forall N \in \mathbb{N}, \quad \mathcal{E}_{N}-\mathcal{E}_{0}=-\mathcal{R}_{\ell}-\mathcal{R}_{r} \leq 0
$$

with

$$
\mathcal{R}_{r} \geq 0, \quad \mathcal{R}_{\ell} \geq 0
$$

This assumption are numerically satisfied

(1) Introduction

(2) Exact transparent boundary conditions
(3) Discrete transparent boundary conditions
(4) Numerical results
(5) Conclusion and perspectives

Comparison to the solution for IKdV, $\alpha+\varepsilon=2.10^{-3}$

Figure: Evolution of the reference solution for ($\alpha=c=0, \varepsilon=2.10^{-3}$) and $u_{0}=u_{0, G}$

Comparison to the solution for IKdV, $\alpha+\varepsilon=2.10^{-3}$

Figure: Evolution of the reference solution for $\left(c=0, \alpha=\varepsilon=10^{-3}\right)$ and $u_{0}=u_{0, G}$

Comparison to the solution for IKdV, $\alpha+\varepsilon=2.10^{-3}$

Figure: Evolution of the reference solution for $\left(c=2, \alpha=0, \varepsilon=2 \cdot 10^{-3}\right)$ and $u_{0}=u_{0, W P}$

Comparison to the solution for IKdV, $\alpha+\varepsilon=2.10^{-3}$

Figure: Evolution of the reference solution for ($c=2, \alpha=\varepsilon=10^{-3}$) and $u_{0}=u_{0, W P}$

Behaviour of the relative energy with respect to δx and δt

$$
\left(\alpha=c=0, \varepsilon=2 \cdot 10^{-3}\right), u_{0}=u_{0, G} \quad\left(c=0, \alpha=\varepsilon=10^{-3}\right), u_{0}=u_{0, G}
$$

Figure: Evolution of \mathcal{E}_{P} with respect to δx for various δt.

- As $\delta x<5.10^{-5}$, bad behaviour of \mathcal{E}_{P}
- Inversion of a matrix whose determinant is of order $\mathcal{O}\left(\frac{c \delta x^{2}}{\varepsilon}+\frac{\delta x^{3}}{\varepsilon \delta t}\right)$

Behaviour of the relative energy with respect to δx and δt

$\left(c=2, \alpha=0, \varepsilon=2 \cdot 10^{-3}\right), u_{0}=u_{0, W P}$

$$
\left(c=2, \alpha=\varepsilon=10^{-3}\right), u_{0}=u_{0, W P}
$$

Figure: Evolution of \mathcal{E}_{P} with respect to δx for various δt.

- As $\delta x<5.10^{-5}$, bad behaviour of \mathcal{E}_{P}
- Inversion of a matrix whose determinant is of order $\mathcal{O}\left(\frac{c \delta x^{2}}{\varepsilon}+\frac{\delta x^{3}}{\varepsilon \delta t}\right)$

Approximate discrete transparent boundary conditions

Recall that the problem of inverting the \mathcal{Z}-transform in the transparent boundary conditions amounts to expand into Laurent series the functions $s^{s}(z), s^{u}(z), p^{s}(z), p^{u}(z)$ defined by the relation

$$
\begin{aligned}
P(r) & =r^{4}-2 r^{3}+\frac{4 \delta x^{3}}{\delta \delta t} p(z) r^{2}+2 r-1 \\
& =\left(r^{2}-s^{s}(z) r+p^{s}(z)\right)\left(r^{2}-s^{u}(z) r+p^{u}(z)\right)
\end{aligned}
$$

The roots of $r^{2}-s^{s} r+p^{s}$ belongs to $\{r \in \mathbb{C},|r|<1\}$ whereas the ones of $r^{2}-s^{u} r+p^{u}$ belongs to $\{r \in \mathbb{C},|r|>1\}$.

Approximate discrete transparent boundary conditions

Let us calculate $\left(s^{s}, p^{s}, s^{u}, p^{u}\right)$. These functions satisfy

$$
\begin{cases}s^{s}+s^{u} & =2 \\ s^{s} s^{u}+p^{s}+p^{u} & =\frac{4 \delta x^{3}}{\varepsilon \delta t} p(z) \\ s^{s} p^{u}+s^{u} p^{s} & =-2 \\ p^{s} p^{u} & =-1\end{cases}
$$

We look for an asymptotic expansion of these quantities as $\delta x \rightarrow 0$ in the form:

$$
s^{s}=\sum_{k \geq 0} s_{k} \delta x^{k}, \quad p^{s}=\sum_{k \geq 0} p_{k} \delta x^{k}, \quad s^{u}=\sum_{k \geq 0} t_{k} \delta x^{k}, \quad p^{u}=\sum_{k \geq 0} q_{k} \delta x^{k} .
$$

Approximate discrete transparent boundary conditions

By inserting this expansion into the equation and identifying $O\left(\delta x^{n}\right)$ terms with $(n \in \mathbb{N})$, we obtain a non linear system at $0^{\text {th }}$ order:

$$
\begin{cases}s_{0}+t_{0} & =2 \\ s_{0} t_{0}+p_{0}+q_{0} & =0 \\ s_{0} q_{0}+t_{0} p_{0} & =-2 \\ p_{0} q_{0} & =-1\end{cases}
$$

The solution writes $\left(s_{0}, p_{0}, t_{0}, q_{0}\right)=(0,-1,2,1)$.

Approximate discrete transparent boundary conditions

Next, we identify $O\left(\delta x^{n}\right)$ terms with $n \geq 1$. One finds the family of linear systems

$$
A\left(\begin{array}{c}
s_{n} \\
p_{n} \\
t_{n} \\
q_{n}
\end{array}\right)=F_{n} \text { where } A=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
t_{0} & 1 & s_{0} & 1 \\
q_{0} & t_{0} & p_{0} & s_{0} \\
0 & q_{0} & 0 & p_{0}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 \\
1 & 2 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right),
$$

where 0 is a simple eigenvalue associated to $v=\left(\begin{array}{c}1 \\ -1 \\ -1 \\ -1\end{array}\right)$.

Approximate discrete transparent boundary conditions

If the compatibility condition

$$
\operatorname{det}\left(F_{n},\left(\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)\right)=0
$$

is fulfilled, then one can compute $U_{n}=\left(s_{n}, p_{n}, t_{n}, q_{n}\right)^{T}$.

Approximate discrete transparent boundary conditions

Let λ_{1} the root of $\lambda_{1}^{3}+\frac{2}{\varepsilon \delta t} p(z)=0$ whose real part is negative. We get:

$$
\begin{gathered}
s^{s}=\lambda_{1} \delta x+\frac{\lambda_{1}^{2}}{2} \delta x^{2}+\frac{p}{3 \varepsilon \delta t} \delta x^{3}+O\left(\delta x^{4}\right), \\
s^{u}=2-\lambda_{1} \delta x-\frac{\lambda_{1}^{2}}{2} \delta x^{2}-\frac{p}{3 \varepsilon \delta t} \delta x^{3}+O\left(\delta x^{4}\right), \\
p^{s}=-1-\lambda_{1} \delta x-\frac{\lambda_{1}^{2}}{2} \delta x^{2}+\frac{2 p}{3 \varepsilon \delta t} \delta x^{3}+O\left(\delta x^{4}\right), \\
p^{u}=1-\lambda_{1} \delta x+\frac{\lambda_{1}^{2}}{2} \delta x^{2}+\frac{2 p}{3 \varepsilon \delta t} \delta x^{3}+O\left(\delta x^{4}\right) .
\end{gathered}
$$

Approximate discrete transparent boundary conditions

We now need to invert the \mathcal{Z} transform of
$z \mapsto \lambda_{1}(s(z))=-\left(\frac{2}{\varepsilon \delta t}\right)^{1 / 3} p(z)^{1 / 3}$. Note that

$$
p(z)^{k / 3}=\frac{\left(1-z^{-1}\right)^{k / 3}}{\left(1+z^{-1}\right)^{k / 3}}, \quad \forall|z|>1, \quad \forall k \in \mathbb{Z}
$$

As a consequence, $p(z)^{k / 3}$ can be expanded into Laurent series explicitly: indeed, $\left(1-z^{-1}\right)^{\gamma}$ and $\left(1+z^{-1}\right)^{\gamma}$ expand as

$$
\begin{array}{ll}
\left(1-z^{-1}\right)^{\gamma}=\sum_{p=0}^{\infty} \frac{\alpha_{p}^{(\gamma)}}{z^{p}}, \quad \alpha_{p+1}^{(\gamma)}=-\frac{\gamma-(p-1)}{p} \alpha_{p}^{(\gamma)}, \quad \alpha_{0}=1 \\
\left(1+z^{-1}\right)^{\gamma}=\sum_{p=0}^{\infty} \frac{\beta_{p}^{(\gamma)}}{z^{p}}, \quad \beta_{p+1}^{(k)}=\frac{\gamma-(p-1)}{p} \beta_{p}^{(\gamma)}, \quad \beta_{0}=1
\end{array}
$$

Numerical results- $\left(\alpha=c=0, \varepsilon=10^{-3}\right)$, $u_{0}=u_{0, G}$

standard coefficients

asymptotic coefficients

Figure: Evolution of \mathcal{E}_{P} with respect to δx for various δt.
The bad behaviour of \mathcal{E}_{P} is clearly limited when $\delta x, \delta x^{3} / \delta t$ are very small.

Numerical results - Long time simulations

coefficients \tilde{p}^{s} and $\widetilde{a p}^{s}$

coefficients \tilde{s}^{s} and $\widetilde{a s}^{s}$

Figure: Evolution of the convolution coefficients.

- Asymptotic coefficients useful for long time simulations
- Standard coefficient do not have the good decay ($n^{-3 / 2}$)

Numerical results

coefficients \tilde{p}^{s} and $\widetilde{a p}^{s}$

coefficients \tilde{s}^{s} and $\widetilde{s} s^{s}$

Figure: Evolution of the convolution coefficients.

Numerical results - Long time simulations

standard coefficients

asymptotic coefficients

Figure: Evolution of the solution with standard and asymptotic convolution coefficients.

Numerical results - Long time simulations

Figure: Evolution of the discrete energy \mathcal{E}_{n} of the solution with standard and asymptotic convolution coefficients.

(1) Introduction

(2) Exact transparent boundary conditions

(3) Discrete transparent boundary conditions

4 Numerical results
(5) Conclusion and perspectives

Conclusion

- Continuous and discrete transparent boundary conditions for the linear mixed KdV-BBM equation
- Second order in time and space scheme
- Preserves spatial mean ad energy
- Stability for the continuous transparent boundary conditions
- Sufficient condition in the discrete case for the stability
- Consistence between the discrete and continuous transparent boundary conditions

Conclusion

- New strategy to compute the inverse \mathcal{Z}-transform, based on an asymptotic expansion as $x=1 / z \rightarrow 0$
- Method efficient and stable except for small δx
- Alternative strategy based on an asymptotic expansion as $\delta x \rightarrow 0$.
- Coefficients have good behaviour for long time simulations

Perspectives

- Non linear equations
- Equations with variable coefficients Fixed point method
- Design of discret transparent boundary conditions for more general models of water waves (KP, Zakharov-Kuznetsov, Serre-Green-Naghdi)

Thanks for your attention

